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INTRODUCTION   

Main objective of optimal reactive power 

problem is to minimize the real power loss and 

bus voltage deviation. Various mathematical 

techniques like the gradient method [1-2], 

Newton method [3] and linear programming [4-

7] have been adopted to solve the optimal 

reactive power dispatch problem. Both   the 

gradient and Newton methods have the 

complexity in managing inequality constraints. 

If linear programming is applied then the input- 

output function has to be uttered as a set of 

linear functions which mostly lead to loss of 

accuracy.   The problem of voltage stability and 

collapse play a major role in power system 

planning and operation [8].  Global optimization 

has received extensive research awareness, and 

a great number of methods have been applied to 

solve this problem. Evolutionary algorithms 

such as genetic algorithm have been already 

proposed to solve the reactive power flow 

problem [9, 10]. Evolutionary algorithm is a 

heuristic approach used for minimization problems 

by utilizing nonlinear and non-differentiable 

continuous space functions. In [11], Genetic 

algorithm has been used to solve   optimal 

reactive power flow problem. In [12], Hybrid 

differential evolution algorithm is proposed to 

improve the voltage stability index. In [13] 

Biogeography Based algorithm is projected to 

solve the reactive power dispatch problem. In 

[14], a fuzzy based method is used to solve the 

optimal reactive power scheduling method. In 

[15], an improved evolutionary programming is 

used to solve the optimal reactive power dispatch 

problem. In [16], the optimal reactive power 

flow problem is solved by integrating a genetic 

algorithm with a nonlinear interior point 

method. In [17], a pattern algorithm is used to 

solve ac-dc optimal reactive power flow model 

with the generator capability limits.  

In [18], F. Capitanescu proposes a two-step 

approach to evaluate Reactive power reserves 

with respect to operating constraints and voltage 

stability.  In [19], a programming based approach 

is used to solve the optimal reactive power 

dispatch problem. In [20], A. Kargarian et al 

present a probabilistic algorithm for optimal 
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reactive power provision in hybrid electricity 

markets with uncertain loads. This paper presents 

Customized Particle swarm optimization (CPSO) 

algorithm for solving optimal reactive power 

problem.  The particle swarm optimization 

(PSO) developed by Eberhart and Kennedy in 

1995 is a stochastic global optimization technique 

enthused by social behaviour of bird flocking, 

fish schooling, or animals herding where these 

swarms search for food in a collective manner 

[21], [22]. Each particle in the swarm adjusts its 

search patterns to search for the comprehensive 

optimum in the high dimensional space by 

learning from its own experience and others. 

Since the PSO comprises a very simple concept 

and paradigms can be applied more easily with 

it, it has been proved in certain instances that 

PSO outperforms other population based 

evolutionary computing algorithms in many 

practical engineering fields such as function 

optimization ,artificial neural network training, 

fuzzy system control, blind source separation as 

well as machine learning [23].Furthermore, the 

PSO has also been found to be strong and 

reckless in solving nonlinear, non-differentiable 

and multi-modal problems [24].In modern years, 

there have been a number of efforts to combine 

PSO algorithms with other techniques in order 

to progress the performance of the conventional 

standard PSO.  

Convergent speed, global exploration capability, 

and complication are the main evaluation 

catalogues for PSO and its variants. In this 

paper, the Advance and Retreat strategy is 

presented for the first time into the conventional 

standard PSO united with the Clonal mechanism, 

resulting in building a fresh variant of PSO. 

After each clonal process, the advance and 

retreat strategy bestows the clones with faster 

speed to find nearby local regions by using the 

history information of each particle‟s last 

performance of „flying‟. In the next clonal 

operation, clonal mutation and selection of the 

best individual of a number of subsequent 

generations expand the search space significantly 

and intensification the diversity of clones to 

avoid being trapped in local minima. Thus, the 

clones have more probabilities to find and flee 

the nearby local regions with faster speed. In 

order to evaluate the efficiency of proposed 

Customized Particle swarm optimization (CPSO) 

algorithm, it has been tested on IEEE 30 bus 

system and compared to other reported standard 

algorithms. 

PROBLEM FORMULATION  

The optimal power flow problem is treated as a 

general minimization problem with constraints, 

and can be mathematically written in the 

following form: 

Minimize f(x, u)                                                      (1)  

subject to g(x,u)=0                                                  (2)  

and h(x, u) ≤ 0                                                        (3) 

Where f(x, u) is the objective function. g(x. u) 

and h(x, u) are respectively the set of equality 
and inequality constraints. x is the vector of 

state variables, and u is the vector of control 

variables. 

The state variables are the load buses (PQ 

buses) voltages, angles, the generator reactive 

powers and the slack active generator power: 

x =  Pg1 , θ2 , . . , θN , VL1 , . , VLNL , Qg1 , . . , Qgng  
T

       (4) 

The control variables are the generator bus 
voltages, the shunt capacitors/reactors and the 

transformers tap-settings: 

u =  Vg , T, Qc 
T
                                                      (5) 

or 

u =  Vg1 ,… , Vgng , T1 , . . , TNt , Qc1 , . . , QcNc  
T
           (6) 

Where ng, nt and nc are the number of 

generators, number of tap transformers and the 

number of shunt compensators respectively. 

OBJECTIVE FUNCTION 

Active Power Loss 

The objective of the reactive power dispatch is 

to minimize the active power loss in the 

transmission network, which can be described as 

follows: 

𝐹 = 𝑃𝐿 =  𝑔𝑘𝑘∈𝑁𝑏𝑟  𝑉𝑖
2 + 𝑉𝑗

2 − 2𝑉𝑖𝑉𝑗 𝑐𝑜𝑠𝜃𝑖𝑗      (7) 

or 

𝐹 = 𝑃𝐿 =  𝑃𝑔𝑖 − 𝑃𝑑 = 𝑃𝑔𝑠𝑙𝑎𝑐𝑘 +  𝑃𝑔𝑖 − 𝑃𝑑
𝑁𝑔
𝑖≠𝑠𝑙𝑎𝑐𝑘𝑖∈𝑁𝑔               (8) 

Where gk: is the conductance of branch between 

nodes i and j, Nbr: is the total number of 

transmission lines in power systems. Pd: is the 

total active power demand, Pgi: is the generator 

active power of unit i, and Pgsalck: is the 

generator active power of slack bus. 

Voltage Profile Improvement 

For minimizing the voltage deviation in PQ 

buses, the objective function becomes: 

F = PL + ωv × VD                                                  (9) 
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Where ωv: is a weighting factor of voltage 

deviation. 

VD is the voltage deviation given by: 

VD =   Vi − 1 
Npq
i=1                                                (10) 

Equality Constraint  

The equality constraint g(x, u) of the Optimal 

reactive power problem is represented by the 

power balance equation, where the total power 

generation must cover the total power demand 

and the power losses: 

PG = PD + PL                                                          (11) 

This equation is solved by running Newton 

Raphson load flow method, by calculating the 

active power of slack bus to determine active 

power loss. 

Inequality Constraints  

The inequality constraints h(x, u) reflect the 

limits on components in the power system as 

well as the limits created to ensure system 

security. Upper and lower bounds on the active 

power of slack bus, and reactive power of 

generators: 

Pgslack
min ≤ Pgslack ≤ Pgslack

max                                      (12) 

Qgi
min ≤ Qgi ≤ Qgi

max  , i ∈ Ng                                  (13) 

Upper and lower bounds on the bus voltage 
magnitudes:          

Vi
min ≤ Vi ≤ Vi

max  , i ∈ N                                      (14) 

Upper and lower bounds on the transformers tap 
ratios: 

Ti
min ≤ Ti ≤ Ti

max  , i ∈ NT                                    (15) 

Upper and lower bounds on the compensators 

reactive powers: 

Qc
min ≤ Qc ≤ QC

max  , i ∈ NC                                   (16) 

Where N is the total number of buses, NT is the 
total number of Transformers; Nc is the total 

number of shunt reactive compensators. 

PARTICLE SWARM OPTIMIZATION (PSO) 

The particle swarm procedure is stochastic in 

nature; it uses a velocity vector to update the 

current position of each particle in the swarm. 
The velocity vector is updated based on the 

memory gained by each particle, theoretically 

similar to a narrative memory, as well as the 

knowledge gained by the swarm as a whole. 
Thus, the position of each particle in the swarm 

is updated based on the social behaviour of the 

swarm which acclimatises to its environment by 

returning to talented regions of the space 

previously exposed and probing for improved 
positions over time. Mathematically, the position 

of the i
th
 particle, Xi, at iteration t + 1 is updated 

as follows: 

Xi
t+1 = Xi

t + Vi
t+1                                                  (17) 

Where Vi
t+1 is the corresponding updated 

velocity vector given as follows, 

Vi
t+1 = ωVi

t + c1r1 Pi
t − Xi

t + c2r2 Gbest
t − Xi

t (18)  

Where Vi
t is the velocity vector at iteration t, r1 

and r2 represents arbitrary numbers between 

0and 1; Pi
t represents the best ever particle 

position of particle i, and Gbest
t  corresponds to 

theglobal best position in the swarm up to 

iteration t. The remaining terms are problem 

dependent parameters; in this paper, cognitive 
parameter, c1, and c2, social parameter, are 

considered to be equal to 2. Also, ω is the inertia 

weight which plays an important role in the PSO 
convergence performance. 

Due to the importance of ω in achieving 

efficient search behaviour the optimal updating 

criterion is taken as follows: 

ω = ωmax  −
ωmax −ωmin

kmax
∙ k                                  (19) 

Where ωmax and ωmin are the maximum and 

minimum values of ω, respectively. Also, kmax, 

and k are the number of maximum iterations and 

the number of present iteration. 

Modifications in PSO 

In [25], Tan et al. presented the immunity-clonal 

strategies into the PSO. By cloning the best 

individual often succeeding generations, CPSO 
can promise to uphold the respectable 

performance of standard PSO. In the interim, the 

core of the clonal operator is to produce a new 
particle swarm near the capable candidate solution 

according to the value of the fitness function 

such that the search space are enlarged 

significantly and the diversity of clones is 
augmented to avoid trapping in local minima. In 

[26], golden section search algorithm is united 

with particle swarm optimization algorithm 
together. The PSO is accountable for search 

direction, and the golden section search algorithm 

takes responsibility of step-size along this 

direction. After the search direction of a particle 
is determined by the velocity equation of PSO, 

the golden section algorithm is engaged to speed 

up the convergence along this direction. In PSO-
LS [27], each particle has a chance of self 

improvement by applying local search algorithm 

before it connects information with other particles 
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in the swarm. Then these basic PSO-LS are 

altered by selecting some precise good particles 
initial solutions for local search. In the local 

search, hill-climbing algorithms are amalgamated 

into particle swarm optimization to progress the 
performance of PSO. The genetic algorithm is 

united with local search in the hybrid algorithm. 

HGPSO (hybrid Gradient descent PSO) [28] 

algorithm makes use of gradient information to 
attain faster convergence. The gradient descent 

rule is united with the equation of the initial 

PSO to escape from local minima traps. Multi-
Local PSO algorithm [29] uses gradient descent 

directions in order to drive each particle to a 

neighbour local minimum, thus discovering 
several solutions.  

PRINCIPLE OF CONVENTIONAL ADVANCE 

AND RETREAT STRATEGY 

The conventional advance and retreat strategy is 

a simple and operative method for the problem 

of one-dimensional search. One-dimensional 

search is also called linear search for optimization 

of a single-variable objective function. The 

iterative formula in one-dimension search is as 

follows: 

xk+1 = xk + vkdk                                                   (20) 

Where xk denotes the position of a solution, vk 

denotes the velocity of a solution and dk denotes 

the direction of the velocity. The bottleneck 

problem in Eq. (20) is to define the exploration 

direction dk and the step size vk. Let 

φ vk = f xk + vkdk                                            (21) 

Where  φ vk  denotes the function value of the 

velocity vk, f is the objective function. The 

determination of the step size vk and the 

exploration direction dk satisfying Eq.(22) is the 

one-dimensional search problem. 

φ vk <  φ 0                                                       (22) 

The one-dimensional search is also called 

optimal one dimensional search and the step-

size vk is called optimal step-size if the step-size 

vk minimizes the objective function along the 

exploration direction dk as in Eqs.(23) and (24). 

f xk + vkdk = minf xk + vdk , where v > 0     (23) 

Or 

φ vk = minφ v , where v > 0                          (24) 

Advance and Retreat Algorithm 

Step1 Initialization: v0 ∈ [0,∞], h0>0, and the 

factor of 

Acceleration α >1, calculate 𝜑(v0), k=0. 

Step2 Evaluations of the Fitness Values: 

vk+1 = vk + hk 

𝜑k+1 = 𝜑 (vk+1) 

if 𝜑k+1 < 𝜑k then 

go Step3 

else 

go Step 4 

end if 

Step3 Advance: 

hk+1 = αhk 

v = vk 

vk = vk+1 

𝜑k = 𝜑k+1 

k = k + 1 

go Step 2 

Step4 Retreat: 

If k = 0 then 

hk = −hk //inverse the exploration direction 

vk = vk+1 

go Step 2 

else 

stop 

end if 

Step 5: 

a = min{v, vk+1} 

b = max{v, vk+1} 

output [X,Y] 

CUSTOMIZED PARTICLE SWARM  

OPTIMIZATION (CPSO) ALGORITHM 

Clonal Mechanism  

After numerous iterations, a clonal operator is 

used to clone the best individual of n succeeding 

generations as n same particles in the solution 

space according to their fitness values at first, 

then N (size of swarm) new particles are produced 

via clonal mutation and selection processes. 

Fleetingly, the clonal operator in our Customized 

Particle swarm optimization (CPSO) algorithm 

concise as follows, 

Step 1: Initialization.  
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Step 2: The state evolution of particles is 

iteratively restructured according to Eqs. (17), 
(18) and (28). 

Step 3: Memory the global best-fit particle of 

each generation, PgB, as a mother particle of the 
clonal operator in Step 4. 

Step 4: After n generations, clone the 

memorized n global best particles, 𝑃𝑔𝐵
 𝑖 

,i= 1,..,n. 

Step 5: Mutation Procedure: all of the cloned 

particles are mutated to some levels to 

distinguish with original or mother particle by 

using some arbitrary disturbances such as 

Gaussian noise. Assume PgBk be the k-th entry of 

the vector PgB and μ is a Gaussian arbitrary 

variable with zero mean and unity variance, then 

one can have the following arbitrary mutation 

procedure. 

𝑃𝑔𝐵𝑘 + 𝑠 ∗  1 − 𝜇 ∗ 𝑉𝑚𝑎𝑥                                      (25) 

Where s is the scale of mutation and Vmax is the 

maximum velocity. 

Step 6: Selection Procedure: We pile the current 

𝑃𝑔𝐵
 𝑀 

in memory, but the other particles are 

selected according to an approach of the diversity 

keeping of the concentration mechanism so that in 

next generation of particles, a certain 

concentration of particles will be upheld for each 

fitness layer. Here the attentiveness of i-th 

particle is defined as follows. 

𝐷 𝑥𝑖 =    𝑓 𝑥𝑖 − 𝑓 𝑥𝑗   
𝑁+𝑀
𝑗=1  

−1
, 𝑖 = 1,2, . . ,𝑁 + 𝑀(26) 

Where xi and f(xi) in Eq.(26) denote the i-th 

particle and its fitness value, respectively. 

Rendering to above Eq. (26), one can derive a 

selection probability in terms of the concentration 

of particles as, 

𝑝 𝑥𝑖 =

1

𝐷 𝑥𝑖 

 
1

𝐷 𝑥𝑗  

𝑁+𝑀
𝑗=1

 , 𝑖 = 1,2, . . ,𝑁 + 𝑀                 (27) 

Step 7: The algorithm can be completed by 

some common stop criteria such as a given 

maximum number of fitness value evaluations 

or a presetting accuracy of the solution.  

Advance-and-Retreat Strategy 

In each iteration, we use the advance-and-retreat 

strategy to substitute the first part (previous 

velocity of a particle) of Eq. (18) in PSO just for 
the cloned particles. When fitness value turns 

superior at last „flying‟, then the cloned particle 

will progresses according to Eq. (18). When the 
fitness value turns shoddier after last „flying‟, 

the cloned particle retreats then explorations in 

the reverse direction of the last ”flying” with a 
smaller step-size of the preceding velocity, 

which can be expressed as 

𝑉𝑖𝑑  𝑡 + 1 = 𝜔 −𝛼𝑉𝑖𝑑  𝑡  + 𝑐1𝑟1 𝑃𝑖𝐵𝑑  𝑡 − 𝑋𝑖𝑑  𝑡  + 𝑐2𝑟2  𝑃𝑔𝐵𝑑  𝑡 − 𝑋𝑖𝑑  𝑡   𝑤𝑒𝑟𝑒 𝛼 < 1                   (28) 

With the inertia weight 𝜔 declining with the 

evolution of the swarm, clones may be 

controlled in a diminishing local area for 

searching nearby local minima. Due to the 

impact of the global and the local best positions, 

clones alter their tracks arbitrarily. Strikingly, 

we just use the advance-and retreat strategy for 

the cloned particles. Thus, the clones do not 

sprinkle over the exploration space, but fly 

toward the nearby local region rapidly. 

Therefore; the advance and retreat strategy 

empowers each clone to forecast the next 

direction to the local optimum conferring to its 

own history information rather than just 

memorizing the last velocity without any 

conclusion of the last „flying‟. In this way, the 

individual convergent capability of clone is 

improved greatly by using the history information 

of each particle‟s last „flying‟ to restrict particles 

searching in the space around nearby local 

optimum. The proposed Customized Particle 

swarm optimization (CPSO) algorithm doesn‟t 

need to stop the sprouting of the swarm to 

execute local search. Furthermore, the Customized 

Particle swarm optimization (CPSO) algorithm 

doesn‟t need to compute the gradient which is 

computationally expensive and change the 

structure of the traditional PSO. In particular, 

the clonal operator produces a new particle 

swarm near the favourable candidate solution 

according to the value of the fitness function 

such that the exploration space are enlarged 

significantly and the diversity of clones is 

augmented to avoid being trapped in local minima. 

Through keeping the clones, the proposed 

improved algorithm also expands the 

exploration space significantly to avoid trapping 

in local minima. Meanwhile, the core of the 

advance-and-retreat strategy is to speed up 

clones finding nearby minima in an enlarged 

indefinite space. Convergence rate and 

performance could be elevated significantly. 

SIMULATION RESULTS 

Validity of Customized Particle swarm 

optimization (CPSO) algorithm has been verified 
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by testing in IEEE 30-bus, 41 branch system and 

it has 6 generator-bus voltage magnitudes, 4 

transformer-tap settings, and 2 bus shunt reactive 

compensators. Bus 1 is taken as slack bus and 2, 

5, 8, 11 and 13 are considered as PV generator 

buses and others are PQ load buses. Control 

variables limits are given in Table 1. 

Table1. Primary Variable Limits (Pu) 

Variables Min. Max. Category 

Generator Bus 0.95 1.1 Continuous 

Load Bus 0.95 1.05 Continuous 

Transformer-

Tap 
0.9 1.1 Discrete 

Shunt Reactive 

Compensator 
-0.11 0.31 Discrete 

In Table 2 the power limits of generators buses 

are listed. 

Table2. Generators Power Limits  

Bus Pg Pgmin Pgmax Qgmin Qmax 

1 96.00 49 200 0 10 

2 79.00 18 79 -40 50 

5 49.00 14 49 -40 40 

8 21.00 11 31 -10 40 

11 21.00 11 28 -6 24 

13 21.00 11 39 -6 24 

Table 3 shows the proposed CPSO approach 

successfully kept the control variables within 

limits.Table 4 narrates about the performance of 

the proposed CPSO algorithm. Table 5 list out 

the overall comparison of the results of optimal 

solution obtained by various methods.  

Table3.   After optimization values of control variables 

Control Variables CPSO 

V1 1.0238 

V2 1.0226 

V5 1.0221 

V8 1.0264 

V11 1.0401 

V13 1.0498 

T4,12 0.00 

T6,9 0.00 

T6,10 0.90 

T28,27 0.90 

Q10 0.10 

Q24 0.10 

Real power loss 4.2454 

Voltage deviation 0.9090 

Table4. Performance of CPSO algorithm 

Iterations 35 

Time taken (secs) 11.26 

Real power loss 4.2454 

Table5. Comparison of results  

Techniques 
Real power loss 

(MW) 

SGA(Wu et al., 1998) [30] 4.98 

PSO(Zhao et al., 2005) [31] 4.9262 

LP(Mahadevan et al., 2010) 

[32] 
5.988 

EP(Mahadevan et al., 2010) 

[32] 
4.963 

CGA(Mahadevan et al., 2010) 

[32] 
4.980 

AGA(Mahadevan et al., 2010) 
[32] 

4.926 

CLPSO(Mahadevan et al., 

2010) [32] 
4.7208 

HSA (Khazali et al., 2011) 

[33] 
4.7624 

BB-BC (Sakthivel et al., 2013) 

[34] 
4.690 

MCS(Tejaswini sharma et 

al.,2016) [35] 
4.87231 

Proposed CPSO 4.2454 

CONCLUSION 

In this paper a novel approach Customized 

Particle swarm optimization (CPSO) algorithm 

successfully solved optimal reactive power 

problem. Advance-and-retreat strategy has been 

used to bestow the clones with faster speed to 

find nearby local regions before subsequent clonal 

operation.The performance of the proposed 

algorithm has been tested in standard IEEE 30 

bus test system.Simualtion results reveal about 

the better performance of the proposed algorithm 

in reducing the real power loss.  
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