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INTRODUCTION 

Studies of natural oscillations of curvilinear 
sections of pipelines with a constant flow of 
liquid within the framework of the core theory 
began to develop in the second half of the last 
century. One of the first works in this area is the 
article by V.S. Ushakov [1], where the equation 
of motion of the circular section of the pipeline 
was obtained and its natural oscillations were 
studied at a constant flow velocity and internal 
pressure. The flow velocity was considered to 
be small, which made it possible to discard 
some small terms of the equation and reduce the 
solution to the investigation of the oscillations 
of the circular rod. Further studies in this area 
began to develop quite intensively in the works 
of T. Anni [2], I. Hill and S. Davis [3], S.S. 
Zhenya [4] and M.P. Paidussis [5]. The same 
problem within the framework of the core theory 
was solved in the works: P.D. Dotsenko [6-8], 
VA Svetlitsky [9,10], V.F. Ovchinnikov [11], V.A. 
Svetlitsky [12], etc., which gives the equations of 
motion of a curvilinear planar or spatial pipeline, 
the solutions of which and their analysis are 
presented in the form of graphs of the dependence 
of the frequencies of natural oscillations on various 
factors (pipeline curvature, fluid flow rate, 
pressure, etc.). Acceptable for practical calculations. 
Experimental studies of curved sections of 
pipelines with a liquid flow are described in 
detail in [13]. The results of investigations of 
this problem within the framework of the core 
theory can be briefly formulated as follows:  

The eigen frequencies of the curved sections of 

the pipeline decrease with increasing flow velocity 

and increase with increasing curvature of the 

longitudinal axis of the pipeline. In this paper, 

the curvilinear pipeline with a flowing liquid is 

considered as a toroidal shell. The equations of 

motion of flexural oscillations of the toroidal shell 

are derived on the basis of general relations of 

the geometrically nonlinear theory of 

shells.Mushtari and K.Z. Galimov [14]. This theory 

considers such a bending of shells, in which the 

maximum deflection (in this case, the radial 

displacement of the points of the middle surface w
) Is of the same order of magnitude as the wall 

thickness, or even exceeds it, but small in 

comparison with other linear dimensions of the 

shell. 

STATEMENT OF THE PROBLEM AND 

METHODS OF SOLUTION 

We consider a curvilinear pipeline section in the 

form of a thin-walled large-diameter pipe, through 

which an ideal incompressible fluid flows at a 

constant speed constU   and constant hydrostatic 

pressure contsp 0 . In addition to this pressure, 

the hydrodynamic pressure arising from the 

fluid motion acts on the walls of the tube. The 
problem is to investigate the frequencies and forms 

of intrinsic bending vibrations in the plane of 

curvature of a given section of the pipeline as a 
thin toroidal shell, taking into account the dynamic 

ANNOTATION 

It is given to the study of natural oscillations of a viscoelastic toroidal shell with a flowing liquid, based on 

the theory of shells. On the basis of a geometrically nonlinear version of the semimuscular theory of shells, 

the equations of motion of the toroidal shell are obtained with all inertial forces components included, 

including tangential forces, and also taking into account the working internal hydrostatic and dynamic 

pressures. Based on the developed methods, the intrinsic oscillations of the toroidal shell with a flowing 

liquid. 

Keywords: Toroidal shell, pressure, fluid oscillations, viscoelasticity. 
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influence of the flowing fluid, internal pressure, 

and deformation of the middle surface of the 
shell with considerable displacements. 

The pipeline section in question is represented 

as a section of a toroidal shell with a radius R   

the longitudinal axis passing through the centers 

of gravity of its cross-sections. Cross sections 

are circular with a radius of the mean line of the 

section r , shell thickness - h . The value of the 

ratio
r

h
considered to be small, so you can use 

the ratio of the theory of shells based on 

Kirchhoff-Love. The end sections of the shell 

are assumed to be hinged (or rigid). Inside the 

shell at a speed of constU  proceeds ideal 

incompressible fluid with a density conts
0

 st. 

The geometry of the curved section of the 

pipeline is shown in Figure 1 as a toroidal shell 

with a median surface in toroidal curvilinear 

coordinates  , , where  means the central 

angle of the torus, and   - angle in the cross-

section of the shell   20  .If the 

longitudinal axis of the shell is half the 

circumference of the radius  R ,  as shown in 

Figure1, the angle   varies within  0 . 

 

Figure1. Curvilinear pipeline section in toroidal 
coordinates 

When considering the middle surface of a shell 

in curvilinear coordinates  , differentials of 

segments of arcs of coordinate lines 1ds and  

2ds are connected with the differentials of the 

coordinates themselves through the parameters 

of Lame 1A  and 2A :  

  ,,cos 21  rddsdrRds   

therefore  

 rArRA  21 ,cos                    

Curvatures of normal sections of the middle 

surface of the shell in the undeformed state with  

cos
1


R  and rR 2

 according to Figure1 are 

defined by expressions:    

,
cos

cos1

1 



rRR 


     
rR

11

2


.                      

Components of point displacement A the middle 

surface into position 
*A , referred to the radius  

r  (I.e. Dimensionless) and directed along the 

coordinates  y,,   and along the outer normal 

to the middle surface, are denoted respectively  

wWu y ,,,
. The angle of rotation of the tangent 

to the midline of the contour of the cross-section 

is denoted by  .  

Differential Equations and Basic Relations 

In accordance with this theory, the equations of 

equilibrium of the moment forces for the 

toroidal shell element in the deformed state have 

the form (indices 1 and 2 refer to toroidal 

coordinates   and    respectively) [20] 
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where
321 ,, XXX - Components of external 

force vectors. 

The first two equations (1) are the equations of 

equilibrium of forces, the last two are the equations 

of equilibrium of moments. 

Differential equilibrium equations for the shell 

element (1) are nonlinear, since They contain 

works of effort and deformation. In addition, 

they are obtained for a shell in a deformed state. 

Therefore, these equations include radii of curvature  
*

1R  and 
*

2R  deformed middle surface of the shell. 

Their connection with the curvature of the initial 

state is expressed in accordance with [14] by the 

following relations: 
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Change in curvature of the midline of the cross 

section of the shell 2 and torsion are 

expressed in terms of the angle of rotation   

the following relations: 
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In accordance with the assumptions (2) - (3) of 

the half-shell theory of V.Vlasov's shells [15], in 
the first three equilibrium equations (1) we 

neglect the transverse force 1Q , and in the last 

two - torque H .  As a result, in accordance with 

the d'Alembert principle, we obtain a system of 
equations for the motion of the shell in the 

effort: 
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Where 321 ,, XXX  - components of inertia 

forces in coordinates  ,  and along the normal 

to the middle surface, respectively. Eliminating 
all the forces and moments from equations (4) 

except 1T and 2M , we arrive at a single equation 

of motion in the effort: 

  0
1

sin

1

*

3

*

22

2*

2

*

1

2

2

*

2

1

2

2

2

*

22

2

21*

1

*

2

2

2

2

2

1

2

2

2



































































































XR
X

r
X

R

rM

R
T

R

r

M
R

r
T

R

RM

R

rT

R

r











      (5)  

To solve the dynamic problems of the pipeline 

section in question, it is necessary to obtain the 

equation of motion of the toroidal shell in 

displacements. Therefore, we transform equation 

(5), expressing efforts 1T  and 2M  and deformation  

1  and    in displacements, using the relationships 

between the forces, deformations and displacements 

of the semimuscular theory of shells: 
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Where )(0 tR - Relaxation core material; 0E  

- instantaneous modulus; h- shell thickness; 0 - 

Poisson's ratio; wvu ,,  - referred to the radius r  

dimensionless displacement components; yW  - 

projection onto the axis y the point А the middle 

surface of the shell in position 
*A as a result of 

deformation of its contour, v - the angle of 

rotation of the tangent to the midline of the 

section of the shell as a result of deformation of 

the cross section. We assume the integral terms 

in (6) to be small, then applying the freezing 

procedure [29], we note that the relations (6) are 

approximate of the form    
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where R - Real constant;  
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S , 

respectively, the cosine and sine Fourier images 

of the relaxation core of the material. As an 

example of a viscoelastic material, we take three 

parametric relaxation nuclei     1/ tAetR t
. 

On the influence function 𝑅 𝑡 − 𝜏  the usual 

requirements of integrability, continuity (except 

for 𝑡 = 𝜏), sign-definiteness and monotony: 

𝑅 > 0,
𝑑𝑅 𝑡 

𝑑𝑡
≤ 0,   0 <  𝑅 𝑡 𝑑𝑡 < 1

∞

0

. 

Substituting relations (6) into equation (5), 
neglecting here small nonlinear terms, we obtain 

the resolving equation of motion of the toroidal 

shell, expressed in displacements  
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 where
*

iX  - components of inertia forces: 

-tangential components in coordinates   and    
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Where p - internal pressure, including 

hydrodynamic pressure, which occurs when the 

fluid moves,  - density of the shell material. 

The equation of motion of the toroidal shell (7) 

is a differential inhomogeneous partial differential 

equation with four unknown quantities ,,, wvu . 

Adding to it three relations on the membrane 

theory of shells: 
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We obtain a complete system of equations with 
four unknowns. For a stationary fluid flow, the 
solution of Eqs (7), (8) allows us to determine 
the frequencies and shapes of the eigenoscillations 
of the curved pipeline section. 

Determination of Hydrodynamic Pressure 
Caused by a Fluid Flow 

The region bounded by a toroidal cavity filled 

with a liquid is considered in toroidal coordinates  

 ,, ,  where  r0  - radial coordinate 

in the plane of the cross section of the torus (see 

Fig. 1), 00  
 and   . Lame 

coefficients of the coordinate surface at  

const   have the form  [16]: 
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where  c - scale factor. 

The velocity field of an ideal incompressible 

fluid in the process of shell oscillation is an 

irrotational potential field with a potential 

 t,,,   .The system of basic equations 

of the potential flow of an ideal incompressible 

fluid includes [17]: 

-equality of continuity (Laplace)  
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where   pQ  - uniform pressure function in the 
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where p  and 0p  - full and hydrostatic pressure. 

Here, in the expression for the normal component 

of inertial forces  
*
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X   according to (7), the 

internal pressure on the pipe wall is represented 

as the sum  
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where 
0

 - fluid density, constp 0 - Constant 
hydrostatic pressure; жp - the hydrodynamic 
pressure of the fluid flow in the curvilinear 
pipeline section, determined through Legendre 
functions   
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 - Legendre 

function of the first kind and its first derivative. 

Considering the velocity vector of the fluid flow  

U   in toroidal coordinates, we write down the 

expressions for its components by  ,, : 
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For the component of the velocity vector  U , 

directed along the normal to the deformed 

surface of the shell, the smooth flow around this 

surface by the liquid flow must be satisfied  
[18]: 
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where w  - The dimensionless component of 

displacement of the points of the middle surface 

of the shell, referred to the radius R. 

Thus, the problem of determining the 
hydrodynamic pressure of a liquid on the pipe 

wall reduces to finding the potential  ,  

satisfying the Laplace equation (10) and 

conditions (15), (16) for  R . 

Solution of the System of Differential Equations 

of Motion of a Toroidal Shell. 

The differential equation of motion (7) of a 
curved section of a pipeline with a stationary 

flow of liquid, recorded in displacements 

,,,,
y

Wwvu  in toroidal coordinates   ,  

after the substitution of the values by the 

component of inertia forces *

i
X  it takes the form: 
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(18) 

Where 

,,,, WwVu - moving the shell in a toroidal coordinate; 
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The last term on the right-hand side of equation 

(18) contains the derivative of  of a work  
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 .After differentiation, taking into account 

(18) and discarding small nonlinear terms, the 
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Adding to the equation of motion (18) the 

relation of the semimuscular theory of shells and 
using the formula for the hydrodynamic pressure  

жp , we obtain a complete system of equations 

for the problem in the displacements 
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- the relationship between displacements and 
deformations in the sex of membrane theory of 

shells  
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It should be noted that the displacement 

components  wu ,,   dimensional, therefore all 

terms of the system of equations (20), (21) are 

also dimensionless. To solve the system of 
equations (20), (21), we represent the normal 

component of the displacement arising during 

bending vibrations of the toroidal shell   tw ,,    

in the form satisfying the boundary conditions at 

the edges of the shell (see Fig. 1): 
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(22) 

And also   tw ,,  satisfying circularity 

conditions along the circumferential coordinate 

 : 

     nmatftw m sincos,,    ,                   

(23) 

Where  tf - time function 

nmconstat
m

,,,  - wave numbers that 

determine the shape of the shell oscillations in 
the circumferential and longitudinal directions, 

respectively. From the relations (21) between 

the components of displacement at a value  w   

(23) we obtain expressions for the remaining 

components of the displacement and the angle 
of rotation:   
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 (24) 

Substituting expressions (23), (24) for the 

displacement components and the rotation angle 

into the equation of motion of the shell (20) and 

calculating the partial derivatives with respect to 

  and  , we obtain a resolving equation with 

respect to unknown amplitude values
m

b , 

containing a function of time  tf  and its 

second time derivative  tf  , taking into 

account the relationship between displacements 

and deformations in the sex of membrane theory 

of shells: 
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To simplify the form of equation (25) we 

introduce the dimensionless parameter of shell 

thickness h : 

 ,112, 2



  c
rc

h
h        (26) 

Where   - Poisson's ratio. We divide each term 

of equation (25) by 
2

h .  As a result, we get: 
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  (27) 

We shall further simplify the form of the 

resolving equation by introducing in (27) the 
following parameters of the density of the shell 

material
*p ,fluid density

*

0
p  and internal 

hydrostatic pressure 
*

0
p : 
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 In addition, we transform equation (27) using 

the curvature parameter of the toroidal shell  ,  

accepted in the theory of shells [14,15,19], 

which characterizes not only the geometry of the 

shell, but also its material, since it includes the 

Poisson's ratio: 
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We assume that the intrinsic flexural oscillations 

of the toroidal shell occur according to a 

harmonic law with a circular frequency , i.е. 

    ,sin,sin 2 tdtftdtf mm     (30) 

Here it is taken into account that in the 
penultimate term of equation (27) the quantity
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same trigonometric functions  tsin  , ve 

finally get  
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            (31)

The equation of motion of a toroidal shell with a 

stationary fluid flow (31), obtained on the basis 

of a geometrically nonlinear version of the 

semimuscular theory of shells and the theory of 

the potential flow of an ideal incompressible 

fluid, is a homogeneous equation describing its 

deformation of the transverse cross sections of 

the envelope under bending vibrations. All terms 

of which are multipliers with trigonometric 

functions ...3,2,1,sin mm .Thus, when  1m

the shell vibrations occur without deformation of 

the contour of the cross sections are displaced 

during the oscillation process as rigid ones. 

Therefore, the internal pressure does not affect 

the shape of the oscillations 0p  ,  since the term 

of equation (31) containing the pressure 

vanishes when  1m . All other forms of 

vibration ( ...4,3,2m ), connected with the 

deformation of the contour of the cross section 

and the pressure, as can be seen from equation 

(31), has an effect. To solve the problem posed 

by the determined frequencies of the natural 

oscillations of the curvilinear pipeline section 

over all shell oscillations, we equate the 

coefficients for the same trigonometric functions  

msin   at  ...3,2,1m   from equation (31), 

after some transformations, we obtain an infinite 

system of homogeneous linear algebraic 

equations with respect to unknown amplitude 

values  
m
а  radial component of displacement

w  .We consider a truncated system of 

homogeneous linear algebraic equations 
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obtained from (31) with ...3,2,1m  the 

truncation of an infinite system of linear 

algebraic equations does not significantly affect 

the accuracy of the solution of the problem, 

since this system is regular [20]. A study 

conducted in accordance with the procedure of 

[20] showed that the sum of the moduli of the 

coefficients of the minor terms of each row of 

the matrix  A , divided by the coefficient 

modulus for the principal diagonal term, is less 

than unity for any parameter   .  

INVESTIGATION OF THE NATURAL 

OSCILLATIONS  OF TOROIDAL SHELLS WITH 

A FLUID FLOW. 

Here, the results of determining the real parts (

Rmn
) complex eigen frequencies (

nRmnmn i Im 
) bending vibrations of toroidal 

shells with a flowing liquid in three first shell 

modes  3,2,1, nm . As the relaxation nucleus of 

a viscoelastic material, we take a three-

parameter core  









1t

Ae
tR

t

 Rizhanitena-

Koltunova [30], which has a weak singularity, 

where  ,,A - parameters materials [30]. We 

take the following parameters: 

1,0;05,0;048,0  A .  

The complex roots of the frequency equation are 

determined by the Mueller method, at each 

iteration of the Muller method is applied by the 

Gauss method with the separation of the principal 
element [20]. Investigation of the frequencies of 

proper flexural vibrations of curvilinear sections 

of steel pipelines with a longitudinal axis in the 

form of a half circle  0   with a stationary 

flow of liquid (water) at values of its velocity u 

from 0 to
c

м
50  . It was possible to estimate the 

influence of the flow velocity on the frequency 

of the first four modes ( 4,3,2,1m at 3,2,1n ). 

Calculations were carried out for toroidal shells 

with relative magnitudes 
70

1
,

35

1


r

h different 

curvature 
20

1
,

10

1


R

r
, which corresponded to the 

parameters of curvature 8,5 ; 11,6 and  23,1.  

Table1. Real parts of the natural frequencies as a function of the velocity of the flowing liquid 

20

1


R

r ,

60

1


r

h , 23  
Rmn (Гц) At the velocity of the flowing liquid in 

с

м  

Form of oscillation Frequencies 0U  20U  40U  

1m  

11R  26,46 21,01 17,25 

12R  21,01 20,45 17,74 

13R  22,92 22,72 20,55 

2m  

21R  13,39 12,83 10,42 

22R  16,67 15,82 12,51 

23R  18,68 18,44 16,2 

3m  

31R  13,02 12,29 9,28 

32R  16,43 15,61 12,32 

33R  18,34 18,17 15,83 

4m  

41R  19,47 19,33 14,21 

42R  20,12 20,06 12,97 

43R  21,36 21,22 11,38 

     

These parameters, in turn, corresponded to the 

following values of the curvature of the bends 

and bends of pipelines according to SNiP [21]: 

28,0;57,0   and 0, 14. The instant modulus 

of elasticity of the steel from which the pipes are 

made is assumed to be equal to MПаE 5

0 102  , 

Poisson's ratio. 

The results of the calculations are presented in 
Table. 1-6 and in the graphs of Figure 2 - 8, 
which shows the change in real parts of the 
natural frequencies of bending vibrations Rmn  
curvilinear sections of the steel pipeline as a 
function of the velocity of the flowing liquid for 
different values of the shell thickness. Figure 2 
shows a monotonically increasing frequency 
dependence 21R by the shape of the oscillations 
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at 2m the curvature parameter of the pipeline 
section   and his 

r

h . And conversely, the more 
it affects the natural frequencies of oscillations. 

Less curvature of the tube and the thinner its 
walls, the lower its frequencies of natural 
oscillations Rmn  practically in all forms.     

Table2. Real parts of the natural frequencies as a function of the velocity of the flowing liquid 

20

1


R

r ,

60

1


r

h , 5,11  
Rmn ( Hz) at the velocity of the flowing liquid in 

с

м  

Form of oscillation Frequencies 0U  20U  40U  

1m  

11R  55,34 53,47 51,13 

12R  56,05 55,27 52,39 

13R  60,56 59,99 57,18 

2m  

21R  36,26 34,09 28,57 

22R  44,60 43,78 40,35 

23R  51,67 50,52 47,06 

3m  

31R  35,02 33,01 26,51 

32R  43,11 43,50 39,22 

33R  50,03 49,63 46,58 

4m  

41R  53,01 50,31 47,44 

42R  54,95 52,05 48,50 

43R  55,82 53,92 49,99 

     

Thus, the lowest oscillation frequencies from the 

investigated sections of the pipeline were found 

near the pipe with ratios 
20

1


R

r   and  
70

1


r

h  

(Figure 2,). Oscillation frequencies  Rmn  for 

this pipe were more than 5 times less than the 

frequencies for the pipe with 
10

1


R

r   and  
35

1


r

h  

(Figure 3 and fig. 6). Figures 5 show the results 

of calculating the natural frequencies of the fluid 

flow velocity at  h=0.05. Low frequencies of 

natural oscillations are considered to be the most 

dangerous in connection with the occurrence of 

resonance situations in the operation of 

pipelines and the possibility of loss of stability 

when one of the frequencies of bending 

vibrations  0Rmn . Pressure pipelines made of 

polyethylene pipes are now widely used in the 

transportation of gas, oil, oil products.  

Table3. Real parts of the natural frequencies as a function of the velocity of the flowing liquid 

20

1


R

r ,

60

1


r

h , 5,11  
Rmn ( Hz) at the velocity of the flowing liquid in 

с

м  

Form of oscillation Frequencies 0U  20U  40U  

1m  

11R  8,61 8,01 7,42 

12R  10,52 10,23 9,22 

13R  12,25 12,03 11,93 

2m  

21R  8,30 7,83 7,12 

22R  10,23 9,84 9,01 

23R  11,84 11,75 11,52 

3m  

31R  7,13 6,70 6,32 

32R  8,82 8,42 7,82 

33R  10,12 9,91 9,72 

4m  

41R  11,13 11,05 10,11 

42R  12,42 12,72 12,92 

43R  14,03 13,79 13,25 
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Figure2. The change in real parts of the natural 

frequencies of bending vibrations at different velocities 

of a flowing liquid  h=0,001. 

 

Figure3. The change in real parts of the natural 

frequencies of bending vibrations at different velocities 

of a flowing liquid h=0,005.  

 

Figure4. The change in real parts of the natural 

frequencies of bending vibrations at different velocities 

of a flowing liquid h=0.001. 

Literature sources contain data on the operation 

of such pipelines with information from  

«Pressure pipes from polyethylene. Technical 

conditions » with a range of pipes manufactured 

by the industry. Pipes made of polyethylene 

with a module of elasticity of the material  

МПаE 500   and Poisson's ratio   3,0 , 

have outer diameters up to 1200 mm with a ratio 

of the wall thickness of the pipe to the radius of 

the middle surface  
12

1

8

1


r

h   and are designed 

for internal hydrostatic pressure up to 0.8 MPa 

(Figure7). Curved sections of pipelines made of 

polyethylene pipes are made of sections with an 

external diameter of up to 630 mm and are thin-

walled toroidal shells. Dynamic calculation of 

such areas should be carried out on the basis of 

shell theory. Therefore, the determination of the 

frequencies of natural oscillations of curvilinear 

pipeline sections from polyethylene pipes is 

carried out.  

 

Figure5. The change in real parts of the natural 

frequencies of bending vibrations at different velocities 

of a flowing liquid h=0.05. 

 

Figure6. The change in real parts of the natural 

frequencies of bending vibrations from the velocity of 

the flowing liquid at 2m . 

Frequency study  Rmn  by the first three forms 

of natural oscillations  3,2,1m   curvilinear 

sections of polyethylene pipelines with a much 

smaller modulus of elasticity than in steel pipes 

made it possible to reveal a significant 

dependence of the values of the vibration 

frequencies on the flow velocity of the liquid. In 

accordance with the assortment for polyethylene 

pipes [22], frequency calculations were carried 

out for curved sections of pipelines with an 

external diameter of 630 mm and with a relative 

wall thickness   
4,12

1


r

h . It can be seen that the 

frequencies of tubes with a large curvature  

(
10

1


R

r )   much higher than the frequencies of 

tubes of lesser curvature (
10

1


R

r ). The main 
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conclusion from the analysis of the results of the 

study of the frequencies of the own bending 

vibrations of polyethylene pipes with a liquid 

flow is that, unlike steel pipelines, the natural 

oscillation frequencies of these pipelines depend 

very much on the flow rate of the liquid. Here, 

the decrease in the oscillation frequencies Rmn  

when the flow rate changes from 0 to 
с

м
20

  

reaches 18%, which must be taken into account 

in the dynamic calculations of pipelines. 

Table4. Real parts of the natural frequencies as a function of the velocity of the flowing liquid 

20

1


R

r ,

30

1


r

h , 5,5  
Rmn (Гц) at the velocity of the flowing liquid in 

с

м
 

Form of oscillation Frequencies 0U  20U  50U  

1m  

11R  31,21 30,52 29,09 

12R  40,02 39,31 38,05 

13R  47,02 46,64 46,18 

2m  

21R  24,24 53,02 20,39 

22R  30,56 29,26 26,55 

23R  36,44 35,91 35,27 

3m  

31R  20,83 19,51 16,17 

32R  24,91 24,01 23,34 

33R  28,61 28,39 28,35 

4m  

41R  29,02 28,92 28,98 

42R  30,17 29,15 29,01 

43R  31,36 30,97 30,05 
     

As well as in pipelines, the largest natural 
frequencies are frequencies according to the first 
form of oscillations n1  at 1m , where there 
is no deformation of the contour of the cross 
sections of the pipe. These frequencies correspond 
to the calculation of pipeline sections according 
to the bar theory. The lowest frequency of the 
self-bending oscillations of the curvilinear section 
is realized by shell vibration forms (at 2m  
and 3), corresponding to the deformed contour 
of cross sections and with the formation of one 

longitudinal half-wave of a sinusoid (at 1n ) . 
The study of the natural oscillations of curvilinear 
sections of polyethylene pipelines has shown 
that, in connection with the small cured elastic 
modulus of polyethylene (almost 400 times less 
than that of steel), the oscillation frequencies for 
all the shell forms studied 3,2,1, nm ) and 
practically for all real geometrical sizes of the 
sites is much less than for the corresponding in 
size steel pipelines (Figure 7). 

Table5.  Real parts of natural frequencies depending on the velocity of the flowing liquid 

20

1


R

r ,

35

1


r

h , 1,4  
Rmn (Гц) at the velocity of the flowing liquid in 

с

м  

Form of oscillation Frequencies 0U  20U  30U  

1m  

11R  6,67 6,47 5,56 

12R  7,45 6,82 6,01 

13R  8,74 7,91 7,51 

2m  

21R  4,65 6,19 2,52 

22R  5,55 6,85 3,75 

23R  6,02 5,51 4,69 

3m  

31R  2,23 1,73 0,29 

32R  34,04 2,55 1,53 

33R  5,54 4,91 3,25 

20

1


R

r  
11R  1,2 0 - 
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In this respect, for polyethylene pipelines, a 
more thorough check of the condition for detuning 
the frequencies of external pathogens from natural 
frequencies is required. According to the norms 
of [21], the conditions for frequency detuning for 
the lowest oscillation frequencies have the form: 

3,1min 


R
    or      



minR 7,0 ,                       (33) 

where minR - lowest natural frequency of the 
pipeline;   - frequency of external excitation. 
The low frequencies of one's own flexural 
vibrations, in addition, can cause a loss of stability 
of the pipeline, when they vanish. 

 
Figure7. The change in the real parts of the natural 
frequencies of bending vibrations from the velocity of 

the flowing liquid. 

Thus, when calculating the curvilinear section of 

a polyethylene pipeline with relative curvature 

50

1


R

r  already in the first form of oscillation (

1, nm ) at a liquid flow rate  
с

м
U 20

  

frequency 011   (See the diagram of the 

dashed line in Figure 4). This means that for 

such a pipeline speed 
с

м
U 20  Is critical and it 

has lost stability. With shell forms of bending 

vibrations ( 2m   and 3) The contour of the 

cross sections is deformed (see Figure 3), and 

the internal pressure prevents this deformation, 

that is, increases the rigidity of the tube and, 

consequently, the frequencies of the natural 

oscillations increase. 

 

 

 

 

Table6. Real parts of natural frequencies depending on the velocity of curvature of the shell 

Relative thickness 

r

h  

Curvature 

R

r
 

Frequencies 

1Rm  

1Rm  (Hz) with internal Pressure (MPa) 

 5,10 p  Frequency increase in% 

30

1  
10

1  21R  36,23 38,81 
7,5 

31R  35,06 37,78 

20

1  21R  26,24 29,86 
16,0 

31R  22,86 26,04 

60

1
 

10

1  21R  13,37 14,82 
13,0 

31R  13,05 14,55 

20

1  21R  8,39 9,97 
21,0 

31R  7,17 8,49 

      

To estimate the influence of the internal 

hydrostatic pressure on the natural oscillations, 

we investigated the frequencies  21R    and  

31R   curved sections of a steel pipeline filled 

with a fixed liquid.  

The curvilinear sections of the steel pipeline 

have a relative curvature  
10

1


R

r  and 
20

1   with 

relative thicknesses  
70

1


r

h   and 
35

1  for each 

curvature, when the internal hydrostatic pressure 

changes 
0

p  от 0 up to 1.5 MPa, which 

corresponds to the actual values of the pressure 

in the pipelines. The results of the studies are 

presented in Table 6 and in Figure 6. Analysis 

of the results showed that the internal 

hydrostatic pressure significantly increases the 

natural oscillation frequencies of pipeline 

sections 21  and 31 .   

00 p
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Figure8. The change in the real parts of the natural 

frequencies of bending vibrations from the velocity of 

the flowing liquid. 

It can be seen from Table 6 that an increase in 

pressure from 0 to 1.5 MPa increases the 

oscillation frequency  21R    and  31R  from 8  

-  22 %. The greatest increase in frequencies up 
to 22% is obtained by the most gently sloping 

and most thin-walled curvilinear sections (with 

20

1


R

r  and 
60

1


r

h ). This is because the internal 

pressure prevents the deformation of the contour 

of the cross sections with bending vibrations and 
this obstacle is the greater, the smaller the 

rigidity of the tube. 

In less thin-walled pipes, the flexural rigidity is 

greater (at 
35

1


r

h ), and the effect of pressure, 

although it takes place, but in a more moderate 
form, that is, the increase in frequencies reaches  

158 %. 

A study of the effect of internal hydrostatic 
pressure on the frequencies of natural 

oscillations of curvilinear sections of steel 

pipelines has shown that this influence is 
significant and should undoubtedly be taken into 

account in the dynamic calculations of thin-

walled large-diameter pipelines. Especially 
strongly from the effect of internal pressure, the 

frequencies of natural oscillations of curvilinear 

polyethylene pipelines increase. The value of 

the modulus of elasticity of the material of these 
pipelines is very small (of the order of 500 MPa) 

as compared with the modulus of elasticity of 

steel (2х10
5
 МПа), therefore, the action of 

internal pressure significantly increases the 

rigidity of the pipes, preventing the deformation 

of the contour of the cross section. As 

calculations have shown, the frequencies of 

oscillations along shell forms ( 3,2m ) with 

an allowable pressure in the catalog [22] equal 

to 8,0
0
p  MPa, increase in polyethylene 

pipelines in  5,22   times in comparison with 

frequencies with the same forms, but without 

pressure. Also taking into account the viscous 

properties of the material, 15 - 10% reduces the 

values of natural frequencies; 

DISCUSSION 

Comparison of the research results with the data 

available in the literature. The results of the 
investigation of the frequencies of the 

curvilinear sections of the pipeline with the 

flowing liquid were compared with the data 
most widely presented in many publications in 

the article by S.S. Chzhenya [4], where the 

problem of oscillations of a curved pipe with a 
flowing liquid was solved on the basis of the rod 

theory. Therefore, we compared the frequencies 

of the natural oscillations in the first form  (

11  nm ).In [4], figure 8 shows the frequency 

variation graphs  11R   depending on the flow 

rate of the liquid (water) for the steel pipe with 

hinged ends, with the axis in the form of a 

semicircle, the relative curvature  
10

1


R

r    and 

thin-walled 
30

1


r

h  . The flow rate has changed 

from 0 to
с

м
50 .   

Comparison of the data obtained from the 

graphs shown in Figure 8 of the paper [23] with 

the results of calculations using the procedure 

described in this paper showed that at a flow 

rate  0U   a discrepancy of 3.3%. At speed   

с

м
U 50   the discrepancy was only 7%. The 

problem of natural oscillations of rectilinear 

pipelines with a flowing liquid, considered as 

closed cylindrical shells, was solved by Vol'mir 

[26] in cylindrical coordinates with the 

definition of hydrodynamic pressure using 

Bessel functions. Comparison of the results 

obtained in the monograph with the data of 

these studies shows that for slightly curved 

tubes with a relative curvature of the order

100

1

50

1


R

r   the discrepancy is not more than 

20%. In [24,25], too high results were obtained 

for the frequencies of natural oscillations. In 

connection with the fact that the hydrodynamic 

pressure was obtained, as for a cylindrical shell, 

by the Bessel functions in cylindrical 

coordinates, and not in toroidal ones, as in this 

article. 

In the particular case for a dry curvilinear 

pipeline section, that is, a pipeline without fluid, 

the solutions of this work and [27] give a 

discrepancy of not more than 3%. 
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Thus, in the limiting case for the curvature 
parameter 0 , that is, for a rectilinear 
pipeline, the solution obtained in this paper is 
transformed into a known solution of the 
problem of the natural vibrations of a cylindrical 
shell. Experiments on the study of the frequencies 
of the natural vibrations of shells are described 
in greater detail in the work of V.E. Breslavsky 
[23], where the results of testing steel closed 
cylindrical shells with pivotally fixed ends under 
pressure 0p ,  changed during the experiment 
from 0.2 to 1.2 MPa. Shells with a radius of the 
mean line of the section were tested 15r  sm 
and wall thickness 1,0h sm. At a certain 
pressure 0p   flexural vibrations were excited in 
the envelope with the aid of an oscillator of sound 
frequencies. When a resonance occurs in a certain 
form of oscillation  2m   excitation was turned 
off and oscillations of the shell were recorded on 
the oscilloscope. In the longitudinal direction, one 
half-wave of a sinusoid ( 1n ).   

The difference between experimental data [21] 

and calculations Rmn at 2m  by the formula 

(1) did not exceed 40%, therefore, the results of 

this comparison can be considered satisfactory. 

CONCLUSIONS 

The flow rate U flowing in the fluid pipelines 

(up to 
c

м
20 ),  which varies in the range of real 

velocities, has little effect on the frequencies of 

the natural oscillations of the curvilinear 

sections of the steel pipeline over all the 

investigated shell modes ( 3,2,1m ,4  at  

3,2,1n ). Oscillation frequencies   Rmn  

decrease with an increase in the flow rate from 0 

to 20
c

м   not more than 7%;   

 For each of the sections of the pipeline 

considered, the largest natural frequencies 

are in the first form  nR1  at  1m .   At 

which there is no deformation of the contour 

of the cross sections of the pipe, which 

oscillates like a beam of tubular section. 

These frequencies correspond to the 

consideration of pipeline sections according 

to the bar theory. Of all the frequencies n1  

the frequency is the greatest 13R   by the 

shape of the oscillations at 3n , 

Corresponding to the formation of three half-

waves of a sinusoid in the axial direction of 

the tube; 

 For each form of oscillations of a curved pipe 

 3,2,1m  frequency Rmn
at 1n , which 

corresponds to the formation of sinusoids 

with oscillations of one longitudinal half-
wave, is less than the others, that is, less than 

the frequencies for 2n  and 3, 

corresponding to the formation of two and 
three half-waves in the longitudinal direction 

of the tube; 

 The lowest frequency of bending vibrations, 

the most important for the dynamic calculation 

of the pipeline, the most important is the shell 

mode (with 2m  and 3),  corresponding to 

the deformed contour of the cross-section of 

the pipe, i.e. a cross-section with reduced 

bending stiffness, and with the formation of 

one longitudinal half-wave of a sinusoid (
1n );  

 With an increase in the curvature of the 

pipeline section, i.e. the ratio R

r

, at a constant 

relative thickness (
const

r

h


) frequencies 

Rmn
 own bending vibrations increase. The 

same happens with an increase in the relative 

thickness r

h

, at a constant curvature of the 

tube. In other words, the greater the curvature of 

the tube, the more rigid it becomes, and the 

thicker the pipe wall, the more rigid it is; 

 Taking into account the viscous properties of 

the material up to 10% reduces the values of 

natural frequencies. 
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