

Optimal Planning of Energy Storage Systems in Transmission Networks using Evolutionary Algorithm

R.Viveka¹, Dr.S.Kalyani², P.M.Devie³

¹PG Student, Kamaraj College of Engineering and Technology, Virudhunagar ²HOD of EEE Department, Kamaraj College of Engineering and Technology, Virudhunagar ³Assistant professor, EEE Department, Kamaraj College of Engineering and Technology, Virudhunagar

ABSTRACT

Nowadays, Renewable Energy Sources (RES) plays an important role in the power grid because of increasing power demand. However, most of the renewable energy sources like wind and solar energies are highly intermittent in nature. The availability of such energy sources varies significantly in different geographical locations. Hence, a grid with high renewable energy penetration needs to build sufficient energy storage to ensure an uninterrupted supply to the end users. This project work will focus on various optimization techniques such as particle swarm optimization (PSO), differential evolution (DE) and real coded genetic algorithm (RCGA) to minimize the total investment involved in planning and storage of energy storage technologies. The proposed work will be implemented in IEEE benchmark systems like IEEE14-bus and IEEE 30-bus systems and the simulation results will be analyzed in detail.

Keywords: Energy Storage, Evolutionary Algorithm, Storage Investment Cost, Battery Energy Storage Systems.

INTRODUCTION

THE Conventional power stations, such as coal-fired, gas and nuclear powered plants, as well as hydroelectric dams and large-scale solar power stations, are centralized and often require electricity to be transmitted over long distances [1]. For the purpose of delivering quality power and uninterrupted supply energy storage comes into role. An Energy Storage System (ESS) has the ability of flexible charging and discharging. Recent development and advances in the ESS and power electronic technologies have made the application of energy storage technologies a viable solution for modern power application. The potential applications mainly cover the following aspects. Through time-shifting, the power generation can be regulated to match the loads [2].

Energy storage systems can buffer the output of intermittent renewable sources and consequently contribute to frequency regulation, system stability, peak shaving, and deferral of transmission line investment [3]. The ESS can also be used to balance the entire grid through ancillary services, load following and load levelling. Moreover, it can meet the increasing requirement of reserves to manage the uncertainty of wind generation which can increase the system operation efficiency, enhance power absorption, achieve fuel cost savings and reduce CO_2 emissions. Additionally, the ESS is a potential solution to smooth out the fluctuations and improve supply continuity and power quality [4].

- a) Energy storage is the best option for
- b) Reducing renewable power curtailment
- c) Relieving transmission congestion

Different types of energy storage have different characteristics, including their round-trip efficiency, power and energy rating, self discharge, and investment and maintenance costs. Different types of

*Address for correspondence:

viveka.rajasekar@gmail.com

energy storages include Super-capacitors, Flywheels, Chemical batteries, Pumped hydro, Hydrogen, Compressed air energy. Energy storage based on lithium ion battery provides reliable and fast frequency response [5]. This project work uses lithium ion battery as an energy storage because of its high energy density and high round trip efficiency.

Ramping events and scheduling errors of wind power plants are examined and rated energy and power of a grid connected storage unit is determined [6]. Minimization of the hourly social cost and maximization of wind power utilization over a scheduling period is achieved using Probability optimal power flow (POPF) [7]. Increases the wind energy penetration and determines cost of energy produced through ESS for different scenarios using Optimal power flow (OPF) in UK Generic Distribution System [8].

This paper provides an optimization framework for reducing the total investment cost of energy storage systems. The proposed work is optimized using various evolutionary optimization techniques such as Particle swarm optimization (PSO), Real coded genetic algorithm (RCGA) and Differential Evolution (DE). The results of various techniques implemented in the proposed model are compared and suitable technique is identified which provides reduced investment cost of the energy storage systems.

The performance characteristics and the cost analysis of the lithium ion battery is given in the Table I and II.

Technology	Lithium Ion
Roundtrip Efficiency (%)	85-98
Self-discharge rate	0.1-0.3
Cycle Lifetime (cycles)	1k-10k
Lifetime (Years)	5-15
Specific Energy (W/kg)	75-200
Specific Power (W/Kg)	150-315
Energy Density (Wh/L)	200-500

 TableI. Performance Characteristics of Lithium Ion Battery

 TableII. Cost Analysis of Lithium Ion Battery

Technology	Lithium Ion
Power Cost (\$/kW)	175-4000
Energy Cost (\$/kWh)	500-2500
BoP Cost (\$/kWh)	120-600
O&M Fixed Cost (\$/kW-y)	12-30

ENERGY STORAGE TECHNOLOGIES

Overview

Fig1. Energy Storage Technologies

The electrical energy can be stored in different energy forms: mechanical, electro-chemical, chemical, electromagnetic, thermal, etc. The classification of energy storage technologies according to the stored energy form is illustrated in Fig.1.

Battery Energy Storage Systems (BESS)

The BESS stores electricity in the form of chemical energy. A conventional secondary battery consists of a set of low-voltage/ power battery cells connected in parallel and series to achieve a desired electrical characteristic. Each cell is made up of a liquid, paste or solid electrolyte together with anode and cathode. A battery is charged by an internal chemical reaction under a potential applied to both electrodes. The reaction is reversible and the battery delivers the absorbed energy for discharging [13]. Various types of secondary batteries have been developed for commercial use, including Lead Acid (LA) battery, Nickel Cadmium (NiCd) battery, Nickel Metal Hybrid (NiMH) battery, Lithium Ion (Li-ion) battery and Sodium Sulphur (NaS) battery. This project work focuses on Lithium Ion battery (Li-ion).

The rated capacity of modern wind farms can reach to several hundred MWs. For the energy management purpose, large-scale storage medium should be applied, such as Battery Energy Storage Systems (BESS), Pumped Hydro Storage (PHS) and Compressed Air Energy Storage(CAES). Since the PHS and CAES are limited by topographical constraints, the BESS is considered as a more competitive option for large-scale ESS application due to high power and energy density, scalability, fast response, simple maintenance requirement and high cycle life for both technical and economical considerations. The high energy density storage medium, normally BESS, is adopted for low frequency fluctuation mitigation, and the high power density storage mediums, which can be super-capacitor, Super Conducting Magnetic Energy Storage (SMES), Flywheel Energy Storage (FES), are used for smoothing high-frequency fluctuations. This paper focus on Lithium Ion Battery Storage system to meet over the objective function of minimization of Total Storage Cost on Transmission Networks.

Parameters of Li-Ion Battery

Specific energy density:	100 to 250 W·h/kg
Specific power density:	300 to 1500 W/kg
Nominal voltage:	3.7V/Cell
Rated current:	2.9A
Life time:	2 years
Charging time:	2-6 Hours
Round trip efficiency:	85 - 100

ENERGY STORAGE PLANNING

Consider a power network having nodes with demand ($P_{Di}(t)$), dispatchable generation ($P_{Gi}(t)$), connected to them. Storage is defined in accordance with the generator convention, i.e. the storage power is positive during discharge periods and negative during charge periods. In all cases, the index takes value either 1 or 0 with the understanding that any quantity (such as dispatchable generation) when connected to a node is set to 1 & when disconnected from node is set to 0. The objective function used in optimal storage planning problem, for a single scenario of load and renewable generation profiles over times t=1,2,...,24h, comprises of two major terms: the daily cost of operating

conventional generation, the storage investment cost per interest period (one year or 365 days) as given in Eqn. (1.1).

$$TSC = \sum_{t=1}^{24} \sum_{i=1}^{n} \sum_{k=1}^{N_i} (c_{ik} P_{Gik}(t) + c_{i0}) + \frac{K_s}{365} \sum_{i=1}^{n} \alpha_i SC_i$$
(1.1)

Where the storage investment cost at bus i (SC_i) is in function of the rated power and energy of the device, and is a binary variable α_i which takes the value one, if storage is installed at node and zero otherwise.

The physical and technical constraints that govern the energy storage planning problem are listed below in eqn. (1.2) to eqn. (1.5):

Generator dispatch and ramp-rate limits:

$$P_{Gi}(t) = P_{Gi}^{min} + P_{Gi}(t), \ i = 1, \dots, n, t = 1, \dots 24$$
(1.2)

$$P_{Gi}^{min} \le P_{Gi}(t) \le P_{Gi}^{max} \tag{1.3}$$

DC power flow equations and line flow limits:

$$P_{Gi}(t) - \sum_{j \in \Omega(i)} B_{ij} \theta_{ij}(t) = P_{Di}(t) \quad i = 1, \dots, t = 1, \dots 24$$
(1.4)

$$-P_{ij}^{max} \le B_{ij}\theta_{ij}(t) \le P_{ij}^{max}, j \in \Omega(i) \quad i = 1, ..., n, t = 1, ..., 24.$$
(1.5)

Nomenclature

 K_s Capital recovery factor of storage investment.

- n Number of nodes in the system.
- Ni Number of linear segments in the cost curve of the generator at node .

 $P_{Di}(t)$ Power demand at node i and in period t

 $P_{Gik}(t)$ Power generation at node i, over segment k, and in period t

 $P_{Gi}(t)$ Power generation at node i and in period t

 P_{Gik}^{max} Maximum power generation at node i and over segment k

 P_{Gi}^{min} Minimum power generation at node

 P_{ii}^{max} Maximum power flow limit between nodes i and j

- *SC_i* Storage investment cost at node i
- 86 International Journal of Emerging Engineering Research and Technology V3 I5 May 2015

- B_{ii} Line susceptance between nodes and, defined as a positive number
- $\theta_{ii}(t)$ Difference between nodal angles i and j in period t

Cost Methodology

The basic cost components of Energy storage system are shown in Figure 2

Figure2. Major cost components of the energy storage system

Capital Cost

The capital cost calculation, in its simplest form is given by eqn (1.6)

Total Storage Cost (\$) = Cost of Power Conversion Unit (\$) + Storage Unit Cost (1.6)

The cost of the power conversion equipment is proportional to the power rating of the system as given by eqn. (1.7)

Cost of Power Conversion System (PCS) = PCS Unit Cost (MW)*Power (MW) (1.7)

For most systems, the cost of the storage unit is proportional to the amount of energy stored as given by eqn. (1.8)

Cost Storage (\$) = Storage Cost per Unit (MWh) * Energy Rating (MWh) (1.8)

Where E is the stored energy capacity.

OPTIMIZATION TECHNIQUES USED FOR ENERGY STORAGE PLANNING

In this work, the proposed optimization model is evaluated using various evolutionary computation techniques such as Real Coded Genetic Algorithm (RCGA), Particle Swarm Optimization (PSO) and Differential Evolution (DE) for minimizing the total storage cost of the energy storage system.

Real Coded Genetic Algorithm

Genetic Algorithm (GA) belongs to the class of randomized heuristic search techniques. GA is a general purpose search procedure that uses the principles inspired by natural genetic populations to evolve solution (Goldberg 1989). The traditional GA uses binary representation of strings which is not preferred in continuous search space domain. Real Coded Genetic algorithm (RCGA) gives a straightforward representation of chromosomes by directly coding all variables. The chromosome X is represented as $X = \{PG, P_{rated}\}$, where PG and P_{rated} denotes the size of generation unit and energy storage unit. [13]

Unlike traditional binary coded GA, decision variables can be directly used to compute the fitness value. The RCGA uses selection, crossover and mutation operators to reproduce offspring for the existing population (Wu C et.al 2007). The RCGA coding incorporates Roulette Wheel selection to decide chromosomes for next generation. The selected chromosomes are placed in a matting pool for crossover and mutation operations. The crossover operation enhances the global search property of

GA and mutation operation prevents the permanent loss of any gene value. In this work, Arithmetic Crossover and Polynomial Mutation, has been used to perform crossover and mutation respectively.

The parameters used in RCGA algorithm for the proposed work are listed in the Table 3

Table3. RCGA Parameters

Parameters	Range
Population Size	20
Cross over ratio	0.8
Scaling factor	0.5
No of Iterations	100

The RCGA algorithm used in this work for minimizing the total storage cost of the energy storage system is briefed herein

The step by step procedure involved in RCGA algorithm for minimizing the total storage cost is enumerated below:

Step1: Determine the number of chromosomes, generation, mutation rate and crossover values.

Step2: Randomly initialize the population of chromosomes ($P_G \& P_{RATED}$) for Energy Storage and computation.

Step3: Evaluate the fitness function of chromosomes by calculating the objective function given in Eqn. (1.1)

Step4: Perform Tournament selection by Rouletee wheel selection method.

Step5: Perform Crossover by Arithmetic Crossover Method.

Step6: Perform mutation by polynomial mutation method.

Step7: Update the population by moving the offspring to next generation.

Step8: Print the obtained optimal Storage cost and computation time.

Differential Evolution

Differential Evolution, one of the evolutionary optimization techniques, was introduced by Storn and Price in 1995 (Storn and Price 1997). DE is highly effective and suitable for high dimensionality problems, which deals with high nonlinearity and multiple optima. Like any other evolutionary algorithm, DE also starts with random initialization of population vector with uniform distribution in search space. DE has three operations–mutation, crossover and selection (Zhou S 2007).

The crucial idea behind DE is that crossover and mutation are used for generating trial vectors (Kalyani and Swarup 2013). Mutation operation generates new parameter vector by adding the weighted difference between two population vectors to a third vector. Crossover operation mixes the mutated vector with target vector to yield a trial vector. Based on the computation of trial vectors, selection operation decides the survival of new vectors to the next generation. There are several strategies that can be used in DE algorithm. In this work, a commonly used strategy denoted as 'DE/rand/1/bin' have been used (Arya et.al 2011). In this representation, 'rand' indicates a random mutant vector to be chosen; '1' the number of difference vectors used and 'bin' denotes the crossover scheme. Table 4 denotes the parameters used in DE algorithm.

Table4. DE Parameters

Parameters	Range
Population Size	30
Cross over ratio	0.1-0.9
Scaling factor	0.5
Iteration	100

The DE algorithm used in this work for minimizing the total storage cost of the energy storage system is briefed herein.

The step by step procedure involved in DE algorithm minimizing the total storage cost is enumerated below:

- 1) Randomly initialize a population of individuals X (PG & P_{Rated}). Specify the DE parameters; difference vector scale factor F = 0.05, minimum and maximum crossover probability CR_{min} = 0.1 and CR_{max} = 0.9.
- 2) Evaluate the fitness value of each individual in the population using Eqn (1.1). The fitness value is the total storage cost of the energy storage system.
- 3) Generate mutant vector for each individual x_i according to Eqn. (1.9)

$$V_i = X_{S_1} + F^* (X_{S_2} - X_{S_3})$$
(1.9)

The indices s_1 , s_2 and s_3 are randomly chosen from population size. It is important to ensure that these indices are different from each other and also from the running index i.

4) Perform crossover to yield the trial vector u by combining the mutant vector v with target vector x using Eqn. (1.10).

$$U_{ij} = \begin{cases} V_{ij} rand(j) \le CR & or \quad j = randn(i) \\ X_{ij} rand(j) \le CR & or \quad j \neq randn(i) \end{cases}$$
(1.10)

Where rand $(j) \in [0,1]$ is the jth evaluation of a uniform random generator number. randn $(i) \in \{1, 2, ..., D\}$ is a randomly chosen index ensuring that u_i gets at least one element form mutant vector, v_i . CR is the time varying crossover probability constant determined using (1.11).

$$CR = CR_{\min} - \frac{CR_{\max} - CR_{\min}}{Max.Iterations} * Iteration$$
(1.11)

- 5) Perform selection operation based on fitness value and generate new population. If the trial vector u_i yields a better fitness, then x_i is replaced by u_i, else x_i is retained at its old value.
- 6) If stopping criterion (maximum iterations) is reached, stop and print the optimized parameter set (PG and P_{rated}); else increase iteration count and loop to Step 3.

Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an evolutionary computation technique developed by Kennedy and Eberhart in 1995, inspired by social behavior of birds flocking in a multidimensional space. The system is initialized with a population of random solutions and searches for optima by updating the generations (Kennedy et.al 1995). In PSO, each single solution is called as particle. All particles have fitness value, evaluated by fitness function to be optimized, and have velocities, which direct the flying of the particles (Mostafa et.al 2012). To discover the optimal solution, each and every particle is updated by two 'best' values. The first one called Pbest is the best position particle has achieved so far. The second best value is the overall best value obtained among all particles in the population, called as Gbest. After finding these two best values, each particle changes its velocity and position according to the cognition part (Pbest) and social part (Gbest). The update equations for particle's velocity and position are given by Eqns. (1.12) and (1.13).

$$V_{id}^{k+1} = \omega * V_{id}^{k} + c_1 * rand_1 * (Pbest_{id}^{k} - X_{id}^{k}) + c_2 * rand_1 * (Gbest_d^{k} - X_{id}^{k})$$
(1.12)

$$X_{id}^{k+1} = X_{id}^{k} + V_{id}^{k}$$
(1.13)

$$\omega = \omega_{\max} - \frac{\omega_{\max} - \omega_{\min}}{Max.Iterations} * Current.Iteration$$
(1.14)

Where w is the inertia weight calculated by Eqn. (1.14), V_{id} is the particle velocity, X_{id} is the current particle position (solution), rand₁ is a random number between (0, 1), c1 and c2 indicates cognition and social learning factors respectively. The PSO parameters are listed in Table 5

Table5. PSO Parameters

Parameters	Range
Population Size	10
C 1	1
C2	1
W _{min}	0.8
W _{max}	0.9
Iteration	100

PSO Algorithm for minimizing the total storage cost

- 1) Randomly initialize a population of particles with position X_{id} (PG and P_{Rated}) and velocities V_{id} of the ith particle in dth dimension.
- 2) Set the parameters of PSO, $C_1 = C_2 = 2$, $W_{max} = 0.9$, $W_{min} = 0.5$.
- 3) Evaluate the fitness of each particle in the population with each particle's position (PG and P_{rated}) using Eqn (1.1).
- 4) Compare the current position with particle's previous best experience, Pbest, in terms of fitness value and hence update Pbest for each particle in the population.
- 5) After updating the Pbest, choose the best value among all the particles in Pbest and call it as Global best, Gbest.
- 6) Update the particle's velocity using Eqn. (1.12) and clamp to its minimum (V_{min}) and maximum (V_{max}) limit, whichever violates.
- 7) Move to the next position of the particle using Eqn. (1.13) bounded to its upper and lower limits.
- 8) Stop the algorithm and print the near optimal solution *(final Gbest) if termination criterion or maximum iterations are reached; otherwise loop to Step 3 and continue the process.

IEEE 14 BUS Test Systems

90

The proposed work of minimization of energy storage investment cost is implemented in IEEE 14 system. The hourly load profile taken for IEEE 14 is given in the Table 6. The constant parameters used in this work is given by K_p =400, K_e =600, K_s =0.03,where K_p is the constant of the power conversion unit, K_e is the constant of the energy storage unit & K_s is the capital recovery factor of storage investment. The active power loss of the network is considered in load demand. The Energy Storage has the rating of 96 MW which can cater out critical loads which includes 30% of maximum peak load.

For dynamic loading conditions the performance of the IEEE 14 bus system is analyzed using optimization tools such as PSO, DE & RCGA. To implement the proposed work the storage units are considered in three different fashions which is given by

Case1: Single Energy Storage with maximum Power rating of 96 MW.

Case2: Two Energy Storage with maximum Power rating of 32 MW & 64 MW.

Case3: Three Energy Storage with maximum power rating of 32 MW, 32 MW & 32 MW.

Table6. Hourly Load Data for IEEE 14 Bus System

IEEE 14				
Time in Hours	Pd in MW			
12am – 5am	-10	202.3		
6am – 11am	10	261.8		
12pm – 7pm	15	273.7		
8pm – 11pm	20	285.6		

The performance parameters such as fitness function (\$), mean (\$), standard deviation and time for convergence (sec) for changing system loading conditions using different optimization techniques such as RCGA, PSO & DE are evaluated. The parameters are evaluated for test system with energy storage units being incorporated in possible discrete combinations of maximum power rating as case 1, case 2 & case 3 and enumerated in Table 7, 8 & 9 respectively. The convergence curves for optimized solution using various evolutionary algorithms are depicted in Fig 3, 4 & 5 for various cases.

Table	$\mathbf{D} = \cdots \mathbf{f} = \cdots = \cdots = \mathbf{n}$	Free les at and	fan Cara	1
lane/.	Pertormance	Evaluation	tor Case	- 1
THE PICK	1 01 101 11001000	Dreiterton	Joi Cabe	-

Algorithm	Demand in	Fitness	Mean	Standard	Convergence	Iteration of
	IVI VV	Function (\$)	(\$)	Deviation	Time(sec)	Convergence
	202.3	33035	33235	1.6308	50.36	9
DSO	261.8	33056	33200	7.357	19.73	7
130	273.7	37035	37201	1.0969	113.79	4
	285.4	33011	33169	1.6170	14.11	7
	202.3	26387	26612	5.5178	24.06	2
DE	261.8	25772	26640	5.7206	24.89	1
DE	273.7	26130	26227	5.3738	23.70	2
	285.4	26776	27566	5.7759	23.67	2
	202.3	34533	35198	1.5445	5.03	5
RCGA	261.8	31848	34968	1.5858	5.03	12
	273.7	35759	35942	2.1609	5.43	17
	285.4	32461	35269	1.7188	8.98	53

Fig3. Convergence Characteristics for Case 1 for demand 261.8 MW

91

Algorithm	Demand in MW	Fitness Function (\$)	Mean (\$)	Standard Deviation	Convergence Time (sec)	Iteration of Convergence
	202.3	31756	35381	2.0087	165.71	11
DSO	261.8	28149	29433	2.1353	458.65	8
130	273.7	30761	33319	1.8806	73.06	11
	285.4	27756	28219	1.2425	271.6	6
	202.3	24439	24664	4.1456	59.81	46
DE	261.8	25064	26424	5.399	56.69	74
DE	273.7	24100	24596	7.895	47.35	20
	285.4	25148	26321	4.5713	57.49	45
	202.3	30251	31317	9.902	6.15	10
RCGA	261.8	30899	31940	9.839	6.92	34
	273.7	31216	33271	9.995	5.98	14
	285.4	31454	33567	8.183	6.96	34

 Table8. Performance Evaluation for Case 2

Fig4. Convergence Characteristics for Case 2 for demand 273.7 MW

Table9. Performance Evaluation for Case 3

Algorithm	Demand in MW	Fitness Function (\$)	Mean (\$)	Standard Deviation	Convergence Time (sec)	Iteration of Convergence
	202.3	29316	24009	5.3051	54.79	7
DSO	261.8	26539	27394	3.735	285.95	15
P30	273.7	26476	30612	6.581	31.67	8
	285.4	33473	36999	8.914	44.56	18
	202.3	24204	24433	5.844	48.86	14
DE	261.8	23937	24551	4.762	46.13	4
DE	273.7	24726	25674	5.577	45.45	7
	285.4	25642	27503	7.465	44.88	43
	202.3	29617	30830	1.315	5.91	5
RCGA	261.8	29466	30821	1.414	6.01	32
	273.7	31420	32877	1.169	5.692	38
	285.4	29865	30372	1.2645	6.05	4

Fig5. Convergence Characteristics for Case 3 for demand 261.8 MW

International Journal of Emerging Engineering Research and Technology V3 • 15 • May 2015

On comparing the results obtained by different optimization techniques with changing load scenario and discrete energy storage units, the Differential Evolution (DE) algorithm proves to show promising results and an appropriate tool, compared to other optimization techniques with minimized storage planning cost and outperforms RCGA & PSO.

IEEE 30 BUS Test Systems

The proposed work of minimization of energy storage investment cost is implemented in IEEE 30 system. The hourly load profile taken for IEEE 30 Bus system is given in the Table 10. The constant parameters used in this work is given by K_p =400, K_e =600, K_s =0.03,where K_p is the constant of the power conversion unit, K_e is the constant of the energy storage unit & K_s is the capital recovery factor of storage investment. The active power loss of the network is considered in load demand. The Energy Storage has the rating of 128 MW which can cater out critical loads which includes 30% of maximum peak load.

For dynamic loading conditions the performance of the IEEE 30 bus system is analyzed by using optimization tools such as PSO, DE & RCGA. To implement the proposed work the storage units are taken in three discrete cases which is given by

Case1: Single Energy Storage with maximum Power rating of 128 MW.

Case2: Two Energy Storage with maximum Power rating of 32 MW & 96 MW and 64 MW & 64 MW

Case3: Three Energy Storage with maximum power rating of 64 MW, 64 MW & 64 MW.

Table10. Hourly Load Profile for IEEE 30 Bus System

IEEE 30					
Time in Hours	Percentage Loading of Average Value	Pd in MW			
12am – 5am	-10	252.25			
6am – 11am	10	260.3			
12pm – 7pm	15	289.4			
8pm – 11pm	20	300.25			

The performance parameters such as fitness function (\$), mean (\$), standard deviation and time for convergence (sec) for changing system loading conditions using different optimization techniques such as RCGA, PSO & DE are evaluated. The parameters are evaluated for test system with energy storage units being incorporated in possible discrete combinations of maximum power rating as case 1, case 2 & case 3 and enumerated in Table 11, 12, 13 & 14 respectively. The convergence curves for optimized solution using various evolutionary algorithms are depicted in Fig 6, 7, 8 & 9 for various cases.

Table11	. Performance	Evaluation for	Case I
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	

Algorithm	Demand in MW	Fitness Function (\$)	Mean (\$)	Standard Deviation	Convergence Time (sec)	Iteration of Convergence
	252.25	36030	36077	1.0004	344.56	8
DSO	260.3	37041	37084	1.333	301.39	12
P30	289.4	37529	39584	1.199	200.29	16
	300.25	39701	41238	1.164	318.42	13
	252.25	36161	36742	1.920	147.90	1
DE	260.3	36137	36746	1.700	148.44	1
	289.4	35861	36125	2.069	149.89	3
	300.25	36179	36979	2.128	149.60	2
	252.25	36996	38736	6.6610	3.77	101
RCGA	260.3	37258	37479	7.0921	3.67	6
	289.4	37181	37560	7.7871	4.32	2
	300.25	36556	37430	7 2603	3 71	4

Fig6. Convergence Characteristics for Case 1 for demand 289.4 MW

Table12. Performance Evaluation for Case 2 (a)
--

Algorithm	Demand in MW	Fitness Function (\$)	Mean (\$)	Standard Deviation	Convergence Time (sec)	Iteration of Convergence
	252.25	28033	30254	4.53	135.9	100
	260.3	27041	27084	2.504	239.28	4
PSO	289.4	29577	30584	6.29	301.69	13
	300.25	29146	29824	5.14	92.37	27
	252.25	26387	26612	5.5178	24.06	2
	260.3	25102	26640	5.720	24.89	1
DE	289.4	26130	26227	5.373	23.70	2
	300.25	26776	27566	5.775	23.67	2
	252.25	36472	37491	2.685	5.92	26
PCCA	260.3	36482	37842	4.281	5.61	5
KUGA	289.4	36606	37496	2.985	5.60	6
	300.25	36149	36420	2.764	5.72	7

Fig7. Convergence Characteristics for Case 2(a) for demand 261.8 MW

 Table13. Performance Evaluation for Case 2 (b)

Algorithm	Demand in MW	Fitness Function (\$)	Mean (\$)	Standard Deviation	Convergence Time (sec)	Iteration of Convergence
	252.25	35918	36002	1.282	4.13	8
DSO	260.3	36286	36370	1.278	8.31	10
P30	289.4	36291	39827	1.325	43.91	13
	300.25	39577	40386	2.674	15.92	34
DE	252.25	36122	36640	1.526	18.11	1
	260.3	35969	36119	2.408	18.49	2
	289.4	36430	36870	2.212	85.89	1
	300.25	36073	36110	3.014	84.3	2
RCGA	252.25	37434	38662	4.508	4.05	34
	260.3	36654	36852	4.848	4.33	4
	289.4	36804	36976	4.137	4.07	7
	300.25	36861	36970	4.425	4.02	10

Fig8. Convergence Characteristics for Case 2(b) for demand 252.25 MW

 Table14. Performance Evaluation for Case 3

Algorithm	Demand in MW	Fitness Function (\$)	Mean (\$)	Standard Deviation	Convergence Time (sec)	Iteration of Convergence
	252.25	23916	24009	5.3051	54.79	7
	260.3	25639	27394	3.735	285.95	15
PSO	289.4	28543	30612	6.581	31.67	11
	300.25	33473	36999	8.914	44.56	18
	252.25	36075	36716	1.621	249.45	2
	260.3	35930	36052	1.243	257.57	2
DE	289.4	36294	38068	1.333	250.68	1
	300.25	36106	36620	1.734	251.37	2
	252.25	36960	39628	3.437	5.12	17
	260.3	36515	36670	2.575	4.36	33
RCGA	289.4	36638	38524	3.614	4.45	4
	300.25	36755	38346	4.131	4.35	12

Fig9. Convergence Characteristics for Case 3 for demand 252.25 MW

It is evident from Table 11, 12, 13 & 14 that consistency of each algorithm is measured in terms of statistical parameters namely mean and standard deviation. Further, the near global optimal solution of minimizing the total cost of storage (fitness function) obtained in various algorithms are compared.

On comparing the results of various techniques, the Particle Swarm Optimization (PSO) technique is shown to produce a better performance in terms of minimum fitness function and convergence time

per trial in the case of two storage units having capacity of 64 MW & 64 MW and with three storage units. Figure 6, 7, 8 & 9 shows the convergence characteristics of different evolutionary algorithms.

It is also seen from Fig.6 & 7 that DE algorithm outperforms other evolutionary algorithms as it shows a quicker convergence (i.e., only for convergence) and also the value of fitness function is greatly reduced. Overall it is seen that the performance of DE is better compared to other two optimization techniques for both IEEE 14 & IEEE 30 bus systems.

CONCLUSION

Solving an optimization problem is one of the common scenarios that occur in most engineering applications. The analytical methods are not easy to implement for most of the real-world problems. In fact, for many problems, the curse of dimensionality makes the approach unfeasible to implement. The above issues are of particular importance while solving optimization problems in a power system. As a highly nonlinear, non stationary system with noise and uncertainties, a power network can have a large number of states and parameters. Implementing any of the classical analytical optimization approaches might not be feasible in most of the cases. On the other hand, Evolutionary algorithms like Particle Swarm Optimization (PSO), Differential Evolution (DE) & Real Coded Genetic Algorithm can be an alternative solution. The Optimal Storage Planning in Power System being such a non linear & dynamic problem is solved by utilizing these evolutionary algorithms. The optimal Storage planning is performed in benchmark test systems viz, IEEE 14-bus & IEEE 30-bus system using different optimization tools and the results are evaluated.

On analyzing the results of the test systems, DE proves to be suitable tool for IEEE 14-bus system for discrete combination of different ratings of Energy Storage. For IEEE 30-bus system, the results depicts that PSO outperforms the other tools with changing size and combinations of Energy Storage. By utilizing the suitable tool, the overall Storage planning cost can be reduced and the demand also can be satisfied with enhanced reliability.

REFERENCES

- [1]. B. Hartmann and A. Dán, "Robust Optimization of Energy Storage Investment on Transmission Networks" *IEEE Trans.Power System* vol. 30, no. 1, Jan. 2015.
- [2]. B. Hartmann and A. Dán, "Methodologies for storage size determination for the integration of wind power," *IEEE Trans. Sustain. Energy*, vol. 5, no. 1, pp. 182–189, Jan. 2014.
- [3]. K. Dvijotham, S. Backhaus, and M. Chertkov, Operations-Based Planning for Placement and Sizing of Energy Storage in a GridWith a High Penetration of Renewables, Jul. 2011 [Online]. Available: http://arxiv.org/abs/1107.1382v2.
- [4]. K. M. Chandy, S. H. Low, U. Topcu, and H. Xu, "A simple optimal power flow model with energy storage," in *Proc. 49th IEEE Conf. Decision and Control (CDC)*, Dec. 15–17, 2010, pp. 1051–1057.
- [5]. S. Carr,G.C. Premier,R.M.Dinsdale, A. J. Guwy, and J. Maddy, "Energy storage for active network management on electricity distribution networks with wind power," in *Proc. Int. Conf. Renewable Energies and Power Quality (ICREPQ'12)*, Mar. 28–30, 2012, pp. 1–6.
- [6]. E. Sjödin, D. F. Gayme, and U. Topcu, "Risk-mitigated optimal power flow for wind powered grids," in *Proc. 2012 American Control Conf. (ACC)*, Jun. 27–29, 2012, pp. 4431–4437.
- [7]. H. Oh, "Optimal planning to include storage devices in power systems," *IEEE Trans. Power Syst.*, vol. 26, no. 3, pp. 1118–1128, Aug. 2011.

- [8]. M. Ghofrani, A. Arabali, M. Etezadi-Amoli, and M. S. Fadali, "A framework for optimal placement of energy storage units within a power system with high wind penetration," *IEEE Trans. Sustain. Energy*, vol. 4, no. 2, pp. 434–442, Apr. 2013.
- [9]. T.K.A. Brekken, A.Yokochi, A. von Jouanne, Z. Z.Yen, H. M. Hapke, and D. A. Halamay, "Optimal energy storage sizing and control for wind power applications," *IEEE Trans. Sustain. Energy*, vol. 2, no. 1, pp. 69–77, Jan. 2011.
- [10]. Gies, Erica. Global Clean Energy: A Storage Solution Is in the Air, *International Herald Tribune*, October 1, 2012. Retrieved from NYTimes.com website, March 19, 2013.
- [11]. Haoran Zhao, Qiuwei Wu, Shuju Hu, Honghua Xu, Claus Nygaard Rasmussen "Review of energy storage system for wind power integration support" International conference on applied electronics, May 23,2014.
- [12].Kennedy J., Eberhart R., et al. (1995) "Particle swarm optimization" Proceedings of IEEE international conference on neural networks, vol. 4. Piscataway, NJ: IEEE; pp. 1942–1948.
- [13].Kalyani S. and Swarup K. S., (2013) "Pattern Analysis and Classification for Security Evaluation in Power Networks", International Journal of Electric Power and Energy Systems, volume 44, pp. 547–560.
- [14]. "Rechargeable Li-Ion OEM Battery Products". Panasonic.com. Archived from the original on 13 April 2010. Retrieved 23 April 2010.
- [15]. "Panasonic Develops New Higher-Capacity 18650 Li- Ion Cells; Application of Silicon-based Alloy in Anode". Green carcongress.com. Retrieved 31 January 2011.