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ABSTRACT 

Nowadays, Renewable Energy Sources (RES) plays an important role in the power grid because of increasing 

power demand. However, most of the renewable energy sources like wind and solar energies are highly 

intermittent in nature. The availability of such energy sources varies significantly in different geographical 

locations. Hence, a grid with high renewable energy penetration needs to build sufficient energy storage to 

ensure an uninterrupted supply to the end users. This project work will focus on various optimization techniques 

such as particle swarm optimization (PSO), differential evolution (DE) and real coded genetic algorithm 

(RCGA) to minimize the total investment involved in planning and storage of energy storage technologies. The 

proposed work will be implemented in IEEE benchmark systems like IEEE14-bus and IEEE 30-bus systems and 

the simulation results will be analyzed in detail. 

Keywords: Energy Storage, Evolutionary Algorithm, Storage Investment Cost, Battery Energy Storage 

Systems. 

 

INTRODUCTION 

THE Conventional power stations, such as coal-fired, gas and nuclear powered plants, as well as 

hydroelectric dams and large-scale solar power stations, are centralized and often require electricity to 

be transmitted over long distances [1]. For the purpose of delivering quality power and uninterrupted 

supply energy storage comes into role. An Energy Storage System (ESS) has the ability of flexible 

charging and discharging. Recent development and advances in the ESS and power electronic 

technologies have made the application of energy storage technologies a viable solution for modern 

power application. The potential applications mainly cover the following aspects. Through time-

shifting, the power generation can be regulated to match the loads [2]. 

Energy storage systems can buffer the output of intermittent renewable sources and consequently 

contribute to frequency regulation, system stability, peak shaving, and deferral of transmission line 

investment [3]. The ESS can also be used to balance the entire grid through ancillary services, load 

following and load levelling.  Moreover, it can meet the increasing requirement of reserves to manage 

the uncertainty of wind generation which can increase the system operation efficiency, enhance power 

absorption, achieve fuel cost savings and reduce CO2 emissions. Additionally, the ESS is a potential 

solution to smooth out the fluctuations and improve supply continuity and power quality [4]. 

a) Energy storage is the best option for 

b) Reducing renewable power curtailment 

c) Relieving transmission congestion 

Different types of energy storage have different characteristics, including their round-trip efficiency, 

power and energy rating, self discharge, and investment and maintenance costs. Different types of 
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energy storages include Super-capacitors, Flywheels, Chemical batteries, Pumped hydro, Hydrogen, 

Compressed air energy. Energy storage based on lithium ion battery provides reliable and fast 

frequency response [5]. This project work uses lithium ion battery as an energy storage because of its 

high energy density and high round trip efficiency. 

Ramping events and scheduling errors of wind power plants are examined and rated energy and power 

of a grid connected storage unit is determined [6]. Minimization of the hourly social cost and 

maximization of wind power utilization over a scheduling period is achieved using Probability 

optimal power flow (POPF) [7]. Increases the  wind energy penetration and determines cost of energy 

produced through ESS for different scenarios using Optimal power flow (OPF) in UK Generic 

Distribution System [8]. 

This paper provides an optimization framework for reducing the total investment cost of energy 

storage systems. The proposed work is optimized using various evolutionary optimization techniques 

such as Particle swarm optimization (PSO), Real coded genetic algorithm (RCGA) and Differential 

Evolution (DE). The results of various techniques implemented in the proposed model are compared 

and suitable technique is identified which provides reduced investment cost of the energy storage 

systems. 

The performance characteristics and the cost analysis of the lithium ion battery is given in the Table I 

and II.  

TableI. Performance Characteristics of Lithium Ion Battery 

Technology Lithium Ion 

Roundtrip Efficiency (%) 85-98 

Self-discharge rate 0.1-0.3 

Cycle Lifetime (cycles) 1k-10k 

Lifetime (Years) 5-15 

Specific Energy (W/kg) 75-200 

Specific Power (W/Kg) 150-315 

Energy Density (Wh/L) 200-500 

TableII. Cost Analysis of Lithium Ion Battery 

Technology Lithium Ion 

Power Cost ($/kW) 175-4000 

Energy Cost ($/kWh) 500-2500 

BoP Cost ($/kWh) 120-600 

O&M Fixed Cost ($/kW-y) 12-30 

ENERGY STORAGE TECHNOLOGIES 

Overview 

 

Fig1. Energy Storage Technologies 
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The electrical energy can be stored in different energy forms: mechanical, electro-chemical, chemical, 

electromagnetic, thermal, etc. The classification of energy storage technologies according to the stored 

energy form is illustrated in Fig.1. 

Battery Energy Storage Systems (BESS) 

The BESS stores electricity in the form of chemical energy. A conventional secondary battery consists 

of a set of low-voltage/ power battery cells connected in parallel and series to achieve a desired 

electrical characteristic. Each cell is made up of a liquid, paste or solid electrolyte together with anode 

and cathode. A battery is charged by an internal chemical reaction under a potential applied to both 

electrodes. The reaction is reversible and the battery delivers the absorbed energy for discharging [13]. 

Various types of secondary batteries have been developed for commercial use, including Lead Acid 

(LA) battery, Nickel Cadmium (NiCd) battery, Nickel Metal Hybrid (NiMH) battery, Lithium Ion (Li-

ion) battery and Sodium Sulphur (NaS) battery. This project work focuses on Lithium Ion battery (Li-

ion). 

The rated capacity of modern wind farms can reach to several hundred MWs. For the energy 

management purpose, large-scale storage medium should be applied, such as Battery Energy Storage 

Systems (BESS), Pumped Hydro Storage (PHS) and Compressed Air Energy Storage(CAES). Since 

the PHS and CAES are limited by topographical constraints, the BESS is considered as a more 

competitive option for large-scale ESS application due to high power and energy density, scalability, 

fast response, simple maintenance requirement and high cycle life for both technical and economical 

considerations. The high energy density storage medium, normally BESS, is adopted for low 

frequency fluctuation mitigation, and the high power density storage mediums, which can be super-

capacitor, Super Conducting Magnetic Energy Storage (SMES) , Flywheel Energy Storage (FES) , are 

used for smoothing high-frequency fluctuations. This paper focus on Lithium Ion Battery Storage 

system to meet over the objective function of minimization of Total Storage Cost on Transmission 

Networks. 

Parameters of Li-Ion Battery 

Specific energy density:      100 to 250 W·h/kg 

Specific power density:      300 to 1500 W/kg 

Nominal voltage:                3.7V/Cell 

Rated current:                     2.9A 

Life time:                            2 years 

Charging time:                    2-6 Hours 

Round trip efficiency:        85 - 100 

ENERGY STORAGE PLANNING 

Consider a power network having nodes with demand (PDi(t)), dispatchable generation (PGi(t)), 

connected to them. Storage is defined in accordance with the generator convention, i.e. the storage 

power is positive during discharge periods and negative during charge periods. In all cases, the index 

takes value either 1 or 0 with the understanding that any quantity (such as dispatchable generation) 

when connected to a node is set to 1 & when disconnected from node is set to 0. The objective 

function used in optimal storage planning problem, for a single scenario of load and renewable 

generation profiles over times t=1,2,...,24h , comprises of two major terms: the daily cost of operating 
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conventional generation, the storage investment cost per interest period (one year or 365 days) as 

given in Eqn. (1.1). 

                                                                            (1.1) 

Where the storage investment cost at bus i (SCi) is in function of the rated power and energy of the 

device, and is a binary variable  which takes the value one, if storage is installed at node and zero 

otherwise. 

The physical and technical constraints that govern the energy storage planning problem are listed 

below in eqn. (1.2) to eqn. (1.5):  

Generator dispatch and ramp-rate limits: 

                                                                    (1.2) 

                                                                                                                   (1.3) 

DC power flow equations and line flow limits: 

                                                      (1.4) 

                    (1.5) 

Nomenclature 

Capital recovery factor of storage investment. 

n - Number of nodes in the system. 

Ni - Number of linear segments in the cost curve of the generator at node . 

Power demand at node i and in period t 

Power generation at node i , over segment k , and in period t  

Power generation at node i and in period t  

 Maximum power generation at node i and over segment k 

Minimum power generation at node 

Maximum power flow limit between nodes i and j 

Storage investment cost at node i 
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Line susceptance between nodes and, defined as a positive number 

Difference between nodal angles i and j in period t 

Cost Methodology 

The basic cost components of Energy storage system are shown in Figure 2 

 

Figure2. Major cost components of the energy storage system 

Capital Cost 

The capital cost calculation, in its simplest form is given by eqn (1.6) 

Total Storage Cost ($) = Cost of Power Conversion Unit ($) + Storage Unit Cost                           (1.6) 

The cost of the power conversion equipment is proportional to the power rating of the system as given 

by eqn. (1.7) 

Cost of Power Conversion System (PCS) = PCS Unit Cost ($/MW)*Power (MW)                         (1.7) 

For most systems, the cost of the storage unit is proportional to the amount of energy stored as given 

by eqn. (1.8) 

Cost Storage ($) = Storage Cost per Unit ($/MWh) * Energy Rating (MWh)                            (1.8) 

Where E is the stored energy capacity. 

OPTIMIZATION TECHNIQUES USED FOR ENERGY STORAGE PLANNING 

In this work, the proposed optimization model is evaluated using various evolutionary computation 

techniques such as Real Coded Genetic Algorithm (RCGA), Particle Swarm Optimization (PSO) and 

Differential Evolution (DE) for minimizing the total storage cost of the energy storage system.  

Real Coded Genetic Algorithm 

Genetic Algorithm (GA) belongs to the class of randomized heuristic search techniques. GA is a 

general purpose search procedure that uses the principles inspired by natural genetic populations to 

evolve solution (Goldberg 1989). The traditional GA uses binary representation of strings which is not 

preferred in continuous search space domain. Real Coded Genetic algorithm (RCGA) gives a 

straightforward representation of chromosomes by directly coding all variables. The chromosome X is 

represented as X = {PG, Prated}, where PG and Prated denotes the size of generation unit and energy 

storage unit. [13] 

Unlike traditional binary coded GA, decision variables can be directly used to compute the fitness 

value. The RCGA uses selection, crossover and mutation operators to reproduce offspring for the 

existing population (Wu C et.al 2007). The RCGA coding incorporates Roulette Wheel selection to 

decide chromosomes for next generation. The selected chromosomes are placed in a matting pool for 

crossover and mutation operations. The crossover operation enhances the global search property of 
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GA and mutation operation prevents the permanent loss of any gene value. In this work, Arithmetic 

Crossover and Polynomial Mutation, has been used to perform crossover and mutation respectively.  

The parameters used in RCGA algorithm for the proposed work are listed in the Table 3 

Table3. RCGA Parameters 

Parameters Range 

Population Size 20 

Cross over ratio 0.8 

Scaling factor 0.5 

No of Iterations 100 

The RCGA algorithm used in this work for minimizing the total storage cost of the energy storage 

system is briefed herein 

The step by step procedure involved in RCGA algorithm for minimizing the total storage cost is 

enumerated below: 

Step1: Determine the number of chromosomes, generation, mutation rate and crossover values. 

Step2: Randomly initialize the population of chromosomes (PG & PRATED) for Energy Storage and 

computation. 

Step3: Evaluate the fitness function of chromosomes by calculating the objective function given in 

Eqn. (1.1) 

Step4: Perform Tournament selection by Rouletee wheel selection method. 

Step5: Perform Crossover by Arithmetic Crossover Method. 

Step6: Perform mutation by polynomial mutation method. 

Step7: Update the population by moving the offspring to next generation. 

Step8: Print the obtained optimal Storage cost and computation time. 

Differential Evolution  

Differential Evolution, one of the evolutionary optimization techniques, was introduced by Storn and 

Price in 1995 (Storn and Price 1997). DE is highly effective and suitable for high dimensionality 

problems, which deals with high nonlinearity and multiple optima. Like any other evolutionary 

algorithm, DE also starts with random initialization of population vector with uniform distribution in 

search space. DE has three operations–mutation, crossover and selection (Zhou S 2007). 

The crucial idea behind DE is that crossover and mutation are used for generating trial vectors 

(Kalyani and Swarup 2013). Mutation operation generates new parameter vector by adding the 

weighted difference between two population vectors to a third vector. Crossover operation mixes the 

mutated vector with target vector to yield a trial vector. Based on the computation of trial vectors, 

selection operation decides the survival of new vectors to the next generation. There are several 

strategies that can be used in DE algorithm. In this work, a commonly used strategy denoted as 

„DE/rand/1/bin‟ have been used (Arya et.al 2011). In this representation, „rand‟ indicates a random 

mutant vector to be chosen; „1‟ the number of difference vectors used and „bin‟ denotes the crossover 

scheme. Table 4 denotes the parameters used in DE algorithm.  

Table4. DE Parameters 

Parameters Range 

Population Size 30 

Cross over ratio 0.1-0.9 

Scaling factor 0.5 

Iteration 100 
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The DE algorithm used in this work for minimizing the total storage cost of the energy storage system 

is briefed herein. 

The step by step procedure involved in DE algorithm minimizing the total storage cost is enumerated 

below:  

1) Randomly initialize a population of individuals X (PG & PRated) . Specify the DE parameters; 

difference vector scale factor F = 0.05, minimum and maximum crossover probability CRmin= 0.1 

and CRmax= 0.9. 

2) Evaluate the fitness value of each individual in the population using Eqn (1.1). The fitness value is 

the total storage cost of the energy storage system. 

3) Generate mutant vector for each individual xi according to Eqn. (1.9) 

)(*
321 SSSi XXFXV

                                                                                  (1.9) 

The indices s1, s2 and s3 are randomly chosen from population size. It is important to   ensure that 

these indices are different from each other and also from the running index i. 

4) Perform crossover to yield the trial vector u by combining the mutant vector v with target vector x 

using Eqn. (1.10). 
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                                                                                (1.10) 

Where rand (j) [0,1] is the j
th
 evaluation of a uniform random generator number. randn (i) {1, 2, . 

. . , D} is a randomly chosen index ensuring that ui gets at least one element form mutant vector, vi. 

CR is the time varying crossover probability constant determined using (1.11). 

Iteration
IterationsMax

CRCR
CRCR *

.

minmax

min

                                                                                  (1.11) 

5)  Perform selection operation based on fitness value and generate new population. If the trial vector 

ui yields a better fitness, then xi is replaced by ui, else xi is retained at its old value. 

6) If stopping criterion (maximum iterations) is reached, stop and print the optimized parameter set 

(PG and Prated); else increase iteration count and loop to Step 3. 

Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is an evolutionary computation technique developed by Kennedy 

and Eberhart in 1995, inspired by social behavior of birds flocking in a multidimensional space. The 

system is initialized with a population of random solutions and searches for optima by updating the 

generations (Kennedy et.al 1995). In PSO, each single solution is called as particle. All particles have 

fitness value, evaluated by fitness function to be optimized, and have velocities, which direct the 

flying of the particles (Mostafa et.al 2012). To discover the optimal solution, each and every particle is 

updated by two „best‟ values. The first one called Pbest is the best position particle has achieved so 

far. The second best value is the overall best value obtained among all particles in the population, 

called as Gbest. After finding these two best values, each particle changes its velocity and position 

according to the cognition part (Pbest) and social part (Gbest). The update equations for particle‟s 

velocity and position are given by Eqns. (1.12) and (1.13). 
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                                                        (1.14) 

Where w is the inertia weight calculated by Eqn. (1.14), Vid is the particle velocity, Xid is the current 

particle position (solution), rand1 is a random number between (0, 1), c1 and c2 indicates cognition 

and social learning factors respectively. The PSO parameters are listed in Table 5 

Table5.
 
PSO Parameters 

Parameters Range 

Population Size 10 

C 1 1 

C2 1 

W min 0.8 

W max 0.9 

Iteration 100 

PSO Algorithm for minimizing the total storage cost 

1) Randomly initialize a population of particles with position Xid (PG and PRated) and velocities Vid of 

the i
th
 particle in d

th
 dimension. 

2) Set the parameters of PSO, C1 = C2 = 2, Wmax = 0.9, Wmin = 0.5. 

3) Evaluate the fitness of each particle in the population with each particle‟s position (PG and Prated) 

using Eqn (1.1). 

4) Compare the current position with particle‟s previous best experience, Pbest, in terms of fitness 

value and hence update Pbest for each particle in the population. 

5) After updating the Pbest, choose the best value among all the particles in Pbest and call it as Global 

best, Gbest. 

6) Update the particle‟s velocity using Eqn. (1.12) and clamp to its minimum (Vmin) and maximum 

(Vmax) limit, whichever violates. 

7) Move to the next position of the particle using Eqn. (1.13) bounded to its upper and lower limits. 

8) Stop the algorithm and print the near optimal solution *(final Gbest) if termination criterion or 

maximum iterations are reached; otherwise loop to Step 3 and continue the process. 

IEEE 14 BUS Test Systems 

The proposed work of minimization of energy storage investment cost is implemented in IEEE 14 

system. The hourly load profile taken for IEEE 14 is given in the Table 6. The constant parameters 

used in this work is given by Kp=400, Ke=600, Ks=0.03,where Kp is the constant of the power 

conversion unit, Ke is the constant of the energy storage unit & Ks is the capital recovery factor of 

storage investment. The active power loss of the network is considered in load demand. The Energy 

Storage has the rating of 96 MW which can cater out critical loads which includes 30% of maximum 

peak load.  



R. Viveka et al. “Optimal Planning of Energy Storage Systems in Transmission Networks using 

Evolutionary Algorithms” 

International Journal of Emerging Engineering Research and Technology V3 ● I5 ● May 2015               91 

For dynamic loading conditions the performance of the IEEE 14 bus system is analyzed using 

optimization tools such as PSO, DE & RCGA. To implement the proposed work the storage units are 

considered in three different fashions which is given by 

Case1: Single Energy Storage with maximum Power rating of 96 MW. 

Case2: Two Energy Storage with maximum Power rating of 32 MW & 64 MW. 

Case3: Three Energy Storage with maximum power rating of 32 MW, 32 MW & 32 MW. 

Table6. Hourly Load Data for IEEE 14 Bus System  

IEEE 14  

 Time in Hours Percentage Loading of Average Value  Pd in MW 

12am – 5am -10 202.3 

6am – 11am 10 261.8 

12pm – 7pm 15 273.7 

8pm – 11pm 20 285.6 

The performance parameters such as fitness function ($), mean ($), standard deviation and time for 

convergence (sec) for changing system loading conditions using different optimization techniques 

such as RCGA, PSO & DE are evaluated. The parameters are evaluated for test system with energy 

storage units being incorporated in possible discrete combinations of maximum power rating as case 

1, case 2 & case 3 and enumerated in Table 7, 8 & 9 respectively. The convergence curves for 

optimized solution using various evolutionary algorithms are depicted in Fig 3, 4 & 5 for various 

cases. 

Table7. Performance Evaluation  for Case 1 

Algorithm 
Demand in 

MW 

Fitness 

Function ($) 

Mean 

($) 

Standard 

Deviation 

Convergence 

Time(sec) 

Iteration of 

Convergence 

PSO 

202.3 33035 33235 1.6308 50.36 9 

261.8 33056 33200 7.357 19.73 7 

273.7 37035 37201 1.0969 113.79 4 

285.4 33011 33169 1.6170 14.11 7 

DE 

202.3 26387 26612 5.5178 24.06 2 

261.8 25772 26640 5.7206 24.89 1 

273.7 26130 26227 5.3738 23.70 2 

285.4 26776 27566 5.7759 23.67 2 

RCGA 

202.3 34533 35198 1.5445 5.03 5 

261.8 31848 34968 1.5858 5.03 12 

273.7 35759 35942 2.1609 5.43 17 

285.4 32461 35269 1.7188 8.98 53 

 

Fig3. Convergence Characteristics for Case 1 for demand 261.8 MW 
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Table8. Performance Evaluation for Case 2 

Algorithm 
Demand in 

MW 

Fitness 

Function ($) 

Mean 

($) 

Standard 

Deviation 

Convergence 

Time (sec) 

Iteration of 

Convergence 

PSO 

202.3 31756 35381 2.0087 165.71 11 

261.8 28149 29433 2.1353 458.65 8 

273.7 30761 33319 1.8806 73.06 11 

285.4 27756 28219 1.2425 271.6 6 

DE 

202.3 24439 24664 4.1456 59.81 46 

261.8 25064 26424 5.399 56.69 74 

273.7 24100 24596 7.895 47.35 20 

285.4 25148 26321 4.5713 57.49 45 

RCGA 

202.3 30251 31317 9.902 6.15 10 

261.8 30899 31940 9.839 6.92 34 

273.7 31216 33271 9.995 5.98 14 

285.4 31454 33567 8.183 6.96 34 

 

Fig4. Convergence Characteristics for Case 2 for demand 273.7 MW 

Table9. Performance Evaluation for Case 3 

Algorithm 
Demand in 

MW 

Fitness 

Function ($) 

Mean 

($) 

Standard 

Deviation 

Convergence 

Time (sec) 

Iteration of 

Convergence 

PSO 

202.3 29316 24009 5.3051 54.79 7 

261.8 26539 27394 3.735 285.95 15 

273.7 26476 30612 6.581 31.67 8 

285.4 33473 36999 8.914 44.56 18 

DE 

202.3 24204 24433 5.844 48.86 14 

261.8 23937 24551 4.762 46.13 4 

273.7 24726 25674 5.577 45.45 7 

285.4 25642 27503 7.465 44.88 43 

RCGA 

202.3 29617 30830 1.315 5.91 5 

261.8 29466 30821 1.414 6.01 32 

273.7 31420 32877 1.169 5.692 38 

285.4 29865 30372 1.2645 6.05 4 

 

Fig5. Convergence Characteristics for Case 3 for demand 261.8 MW 
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On comparing the results obtained by different optimization techniques with changing load scenario 

and discrete energy storage units, the Differential Evolution (DE) algorithm proves to show promising 

results and an appropriate tool, compared to other optimization techniques with minimized storage 

planning cost and outperforms RCGA & PSO. 

 IEEE 30 BUS Test Systems 

The proposed work of minimization of energy storage investment cost is implemented in IEEE 30 

system. The hourly load profile taken for IEEE 30 Bus system is given in the Table 10. The constant 

parameters used in this work is given by Kp=400, Ke=600, Ks=0.03,where Kp is the constant of the 

power conversion unit, Ke is the constant of the energy storage unit & Ks is the capital recovery factor 

of storage investment. The active power loss of the network is considered in load demand. The Energy 

Storage has the rating of 128 MW which can cater out critical loads which includes 30% of maximum 

peak load. 

For dynamic loading conditions the performance of the IEEE 30 bus system is analyzed by using 

optimization tools such as PSO, DE & RCGA. To implement the proposed work the storage units are 

taken in three discrete cases which is given by 

Case1: Single Energy Storage with maximum Power rating of 128 MW. 

Case2: Two Energy Storage with maximum Power rating of 32 MW & 96 MW and 64 MW & 64 

MW 

Case3: Three Energy Storage with maximum power rating of 64 MW, 64 MW & 64 MW. 

Table10. Hourly Load Profile for IEEE 30 Bus System 

IEEE 30 

Time in Hours Percentage Loading of Average Value Pd in MW 

12am – 5am -10 252.25 

6am – 11am 10 260.3 

12pm – 7pm 15 289.4 

8pm – 11pm 20 300.25 

The performance parameters such as fitness function ($), mean ($), standard deviation and time for 

convergence (sec) for changing system loading conditions using different optimization techniques 

such as RCGA, PSO & DE are evaluated. The parameters are evaluated for test system with energy 

storage units being incorporated in possible discrete combinations of maximum power rating as case 

1, case 2 & case 3 and enumerated in Table 11, 12, 13 & 14 respectively. The convergence curves for 

optimized solution using various evolutionary algorithms are depicted in Fig 6, 7, 8 & 9 for various 

cases. 

Table11. Performance Evaluation for Case 1 

Algorithm 
Demand 

in MW 

Fitness 

Function ($) 

Mean 

($) 

Standard 

Deviation 

Convergence Time 

(sec) 

Iteration of 

Convergence 

PSO 

252.25 36030 36077 1.0004 344.56 8 

260.3 37041 37084 1.333 301.39 12 

289.4 37529 39584 1.199 200.29 16 

300.25 39701 41238 1.164 318.42 13 

DE 

252.25 36161 36742 1.920 147.90 1 

260.3 36137 36746 1.700 148.44 1 

289.4 35861 36125 2.069 149.89 3 

300.25 36179 36979 2.128 149.60 2 

 

 

RCGA 

252.25 36996 38736 6.6610 3.77 101 

260.3 37258 37479 7.0921 3.67 6 

289.4 37181 37560 7.7871 4.32 2 

300.25 36556 37430 7.2603 3.71 4 
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Fig6. Convergence Characteristics for Case 1 for demand 289.4 MW 

Table12. Performance Evaluation for Case 2 (a) 

Algorithm 
Demand 

in MW 

Fitness 

Function ($) 

Mean 

($) 

Standard 

Deviation 

Convergence 

Time (sec) 

Iteration of 

Convergence 

 

PSO 

252.25 28033 30254 4.53 135.9 100 

260.3 27041 27084 2.504 239.28 4 

289.4 29577 30584 6.29 301.69 13 

300.25 29146 29824 5.14 92.37 27 

 

DE 

252.25 26387 26612 5.5178 24.06 2 

260.3 25102 26640 5.720 24.89 1 

289.4 26130 26227 5.373 23.70 2 

300.25 26776 27566 5.775 23.67 2 

RCGA 

252.25 36472 37491 2.685 5.92 26 

260.3 36482 37842 4.281 5.61 5 

289.4 36606 37496 2.985 5.60 6 

300.25 36149 36420 2.764 5.72 7 

 

Fig7. Convergence Characteristics for Case 2(a) for demand 261.8 MW 

Table13. Performance Evaluation for Case 2 (b) 

Algorithm 
Demand 

in MW 

Fitness 

Function ($) 

Mean 

($) 

Standard 

Deviation 

Convergence 

Time (sec) 

Iteration of 

Convergence 

PSO 

252.25 35918 36002 1.282 4.13 8 

260.3 36286 36370 1.278 8.31 10 

289.4 36291 39827 1.325 43.91 13 

300.25 39577 40386 2.674 15.92 34 

DE 

252.25 36122 36640 1.526 18.11 1 

260.3 35969 36119 2.408 18.49 2 

289.4 36430 36870 2.212 85.89 1 

300.25 36073 36110 3.014 84.3 2 

RCGA 

252.25 37434 38662 4.508 4.05 34 

260.3 36654 36852 4.848 4.33 4 

289.4 36804 36976 4.137 4.07 7 

300.25 36861 36970 4.425 4.02 10 
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Fig8. Convergence Characteristics for Case 2(b) for demand 252.25 MW 

Table14. Performance Evaluation for Case 3 

Algorithm 
Demand 

in MW 

Fitness 

Function ($) 

Mean 

($) 

Standard 

Deviation 

Convergence 

Time (sec) 

Iteration of 

Convergence 

 

PSO 

252.25 23916 24009 5.3051 54.79 7 

260.3 25639 27394 3.735 285.95 15 

289.4 28543 30612 6.581 31.67 11 

300.25 33473 36999 8.914 44.56 18 

 

DE 

252.25 36075 36716 1.621 249.45 2 

260.3 35930 36052 1.243 257.57 2 

289.4 36294 38068 1.333 250.68 1 

300.25 36106 36620 1.734 251.37 2 

 

RCGA 

252.25 36960 39628 3.437 5.12 17 

260.3 36515 36670 2.575 4.36 33 

289.4 36638 38524 3.614 4.45 4 

300.25 36755 38346 4.131 4.35 12 

 

Fig9. Convergence Characteristics for Case 3 for demand 252.25 MW 

It is evident from Table 11, 12, 13 & 14 that consistency of each algorithm is measured in terms of 

statistical parameters namely mean and standard deviation. Further, the near global optimal solution of 

minimizing the total cost of storage (fitness function) obtained in various algorithms are compared. 

On comparing the results of various techniques, the Particle Swarm Optimization (PSO) technique is 

shown to produce a better performance in terms of minimum fitness function and convergence time 
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per trial in the case of two storage units having capacity of 64 MW & 64 MW and with three storage 

units. Figure 6, 7, 8 & 9 shows the convergence characteristics of different evolutionary algorithms. 

It is also seen from Fig.6 & 7 that DE algorithm outperforms other evolutionary algorithms as it 

shows a quicker convergence (i.e., only for convergence) and also the value of fitness function is 

greatly reduced. Overall it is seen that the performance of DE is better compared to other two 

optimization techniques for both IEEE 14 & IEEE 30 bus systems. 

CONCLUSION 

Solving an optimization problem is one of the common scenarios that occur in most engineering 

applications. The analytical methods are not easy to implement for most of the real-world problems. 

In fact, for many problems, the curse of dimensionality makes the approach unfeasible to implement. 

The above issues are of particular importance while solving optimization problems in a power system. 

As a highly nonlinear, non stationary system with noise and uncertainties, a power network can have a 

large number of states and parameters. Implementing any of the classical analytical optimization 

approaches might not be feasible in most of the cases. On the other hand, Evolutionary algorithms like 

Particle Swarm Optimization (PSO), Differential Evolution (DE) & Real Coded Genetic Algorithm 

can be an alternative solution. The Optimal Storage Planning in Power System being such a non linear 

& dynamic problem is solved by utilizing these evolutionary algorithms. The optimal Storage 

planning is performed in benchmark test systems viz, IEEE 14-bus & IEEE 30-bus system using 

different optimization tools and the results are evaluated. 

On analyzing the results of the test systems, DE proves to be suitable tool for IEEE 14-bus system for 

discrete combination of different ratings of Energy Storage. For IEEE 30-bus system, the results 

depicts that PSO outperforms the other tools with changing size and combinations of Energy Storage. 

By utilizing the suitable tool, the overall Storage planning cost can be reduced and the demand also 

can be satisfied with enhanced reliability. 
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