

International Journal of Emerging Engineering Research and Technology

Volume 3, Issue 7, July 2015, PP 160-171

ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online)

*Address for correspondence

priyasandhu25@gmail.com

International Journal of Emerging Engineering Research and Technology V3 ● I7 ● July 2015 160

Efficient Partial Product Generation using Radix4 & Radix8 for

Multi-Modulus Multiplication

Priya Sandhu
1
, M. Anusha

2

1Department of ECE, MRCET, Hyderabad, India (PG Scholar)
2Department of ECE, MRCET, Hyderabad, India (Associate Professor)

ABSTRACT

Now a day’s multiplication and modulus takes crucial role so we are combining multiplication and modulus. A

Novel multi-modulus multiplier with different widths of modulus operations. In this paper we have radix4

multi-modulus multiplier with 4bit, 32bit, 64bit and radix8 multi-modulus multiplier with 4bit, 32bit,

64bit.radix4 and radix8 multi-modulus multiplier using Residue multiplication is implemented by using

xilix13.2.

Keywords: multi-modulus multiplier, radix4, radix8.

INTRODUCTION

Multipliers play an important role in today’s digital signal processing and various other applications.

With advances in technology, many researchers have tried and are trying to design multipliers which

offer either of the following design targets – high speed, low power consumption, regularity of layout

and hence less area or even combination of them in one multiplier thus making them suitable for

various high speed, low power and compact VLSI implementation. The common multiplication

method is “add and shift” algorithm. In parallel multipliers number of partial products to be added is

the main parameter that determines the performance of the multiplier. To reduce the number of partial

products to be added, Modified Booth algorithm is one of the most popular algorithms. To achieve

speed improvements Wallace Tree algorithm can be used to reduce the number of sequential adding

stages. Further by combining both Modified Booth algorithm and Wallace Tree technique we can see

advantage of both algorithms in one multiplier. However with increasing parallelism, the amount of

shifts between the partial products and intermediate sums to be added will increase which may result

in reduced speed, increase in silicon area due to irregularity of structure and also increased power

consumption due to increase in interconnect resulting from complex routing. On the other hand

“serial-parallel” multipliers compromise speed to achieve better performance for area and power

consumption. The selection of a parallel or serial multiplier actually depends on the nature of

application. In this lecture we introduce the multiplication algorithms and architecture and compare

them in terms of speed, area, power and combination of these metrics. In computing,

the modulo operation finds the remainder after division of one number by another (sometimes called

modulus) .Given two positive numbers, a (the dividend) and n (the divisor), a modulo n (abbreviated

as a mod n) is the remainder of the Euclidean division of a by n. For instance, the expression "5 mod

2" would evaluate to 1 because 5 divided by 2 leaves a quotient of 2 and a remainder of 1, while "9

mod 3" would evaluate to 0 because the division of 9 by 3 has a quotient of 3 and leaves a remainder

of 0; there is nothing to subtract from 9 after multiplying 3 times 3. (Note that doing the division with

a calculator will not show the result referred to here by this operation; the quotient will be expressed

as a decimal fraction. Although typically performed with a and n both being integers, many

computing systems allow other types of numeric operands. The range of numbers for an integer

modulo of n is 0 to n − 1. (n mod 1 is always 0; n mod 0 is undefined, possibly resulting in a

"Division by zero" error in computer programming languages) See modular arithmetic for an older

and related convention applied in theory. When either a or n is negative, the naive definition breaks

down and programming languages differ in how these values are defined.

https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Remainder
https://en.wikipedia.org/wiki/Division_(mathematics)
https://en.wikipedia.org/wiki/Division_(mathematics)
https://en.wikipedia.org/wiki/Divisor
https://en.wikipedia.org/wiki/Euclidean_division
https://en.wikipedia.org/wiki/Quotient
https://en.wikipedia.org/wiki/Modular_arithmetic

Priya Sandhu & M. Anusha “Efficient Partial Product Generation Using Radix4 & Radix8 for Multi-

Modulus Multiplication”

161 International Journal of Emerging Engineering Research and Technology V3 ● I7 ● July 2015

RADIX4 MULTI MODULUS MULTIPLIER

The radix- booth encoded digit is formatted using three bits: a sign bit and one-hot encoded

magnitude bits, and. The proposed multi-modulus radix- booth encoder using radix- booth encoder

(be2) slices and one mux3block is shown in fig. 2. Booth encoding technique is applied to multi

modulus multiplier modulo (2^n)-1, modulo 2^n and modulo (2^n) +1 operations as the basis. The

Radix -4 multiplication

 The multiplier, Y in two’s complement form can be written as in

Y = -Yn-1 2
n-1 + i Yi2

i ; 0 ≤ i ≤ n-2 (1)

 It can be written as

Y = (- 2 Y2i+1 + + Y2i +Y2i-1) 2
2i ; 0 ≤ i ≤ n-2 (2)

 Radix-4 Booth recoding encodes multiplier bits into [-2, 2].

 Radix-8 Booth recoding encodes multiplier bits into [-4, 4].

The radix-4 Booth encoded digit is formatted using three bits: a sign bit and one-hot encoded

magnitude bits, m1i and m2i. The proposed multi-modulus radix- Booth encoder using radix-4 Booth

Encoder (BE2) slices and one MUX3 block.

Proposed Multi Modulus Radix-4 Booth Encoder

The radix- Booth encoded digit is formatted using three bits: a sign bit and one-hot encoded

magnitude bits. The proposed multi-modulus radix-4 Booth encoder using N/2 radix-4 Booth Encoder

(BE2) slices and one MUX3 block. (N=4)The input corresponding to the modulus 2n-1,2n and 2n+1

is selected when is “00,” “01,” or “10,” respectively. Using the radix-4 Booth encoded multiplier

form, the multi-modulus multiplication are

Figure1.

Proposed 3:1 Multiplexer (Mux3)

Figure2.

Modulo-Reduced Partial Products for Radix-4 Booth Encoding

In the following, the generation of the for the three moduli n/2 PPs, and is described. The standard

circuit implementation of a bit slice of the radix- Booth Selector (BS2) generates a single bit of , i.e., ,

Priya Sandhu & M. Anusha “Efficient Partial Product Generation Using Radix4 & Radix8 for Multi-

Modulus Multiplication”

International Journal of Emerging Engineering Research and Technology V3 ● I7 ● July 2015 162

by selecting a bit of either the multiplicand or one-bit shifted multiplicand and conditionally inverting

it. From Table I, the least significant bits of PPs for moduli 2n-1,2n and 2n+1 are PPs, 0 and, PPs

respectively. Hence, MUX3 of Fig.3.1(b) can be used at the output of the BS2 blocks in the least

significant bit positions to select from PP, 0 or not PP. Furthermore, this input to the BS2 block is also

selected using a MUX3. The proposed multi-modulus generation of the n/2 PPs using BS2 and MUX3

blocks is shown in Fig. 3.2 for n =4 . The number of BS2 and MUX3 blocks required in the PP

generation is n2/2and n4/2, respectively.

Table1.

Proposed Multi-Modulus Partial Product Generation for Radix-4 Booth Encoding

The booth selector (BS2) module is used to generate partial products. The number of BS2 and MUX3

blocks required in the partial products generation is 8 and 4, respectively.(for n = 4)

Figure3.

Priya Sandhu & M. Anusha “Efficient Partial Product Generation Using Radix4 & Radix8 for Multi-

Modulus Multiplication”

163 International Journal of Emerging Engineering Research and Technology V3 ● I7 ● July 2015

Bias for the Modulus 2^N for Radix-4 Booth Encoding

Table2.

Bias for the Modulus 2^N for Radix-4 Booth Encoding

Table3.

Proposed Multi-Modulus Bias Generation for Radix-4 Booth Encoding

An efficient technique to include Ki with minimal hardware circuitry based on the properties of

modulo 2n and modulo 2n+1 arithmetic is proposed. The generation of PPi using BS2 blocks, the bias

Ki can be generated by decoding di.

Figure4.

Priya Sandhu & M. Anusha “Efficient Partial Product Generation Using Radix4 & Radix8 for Multi-

Modulus Multiplication”

International Journal of Emerging Engineering Research and Technology V3 ● I7 ● July 2015 164

Proposed Multi-Modulus Partial Product Addition for Radix-4 Booth Encoding

A multi-modulus addition can be implemented using a MUX3 in the carry feedback path that selects

from, 0 or. The multi-modulus addition of partial products in a CSA tree and a parallel-prefix two-

operand adder is illustrated in Fig.5. The parallel- prefix adder is constructed from the pre-processing

(PP), prefix and post-processing blocks and the implementation of these blocks is shown in Fig. 6 the

number of MUX3 blocks needed for multi-modulus partial product addition.

Figure.5

Implementation of Parallel-Prefix Adder Components

Figure6.

Priya Sandhu & M. Anusha “Efficient Partial Product Generation Using Radix4 & Radix8 for Multi-

Modulus Multiplication”

165 International Journal of Emerging Engineering Research and Technology V3 ● I7 ● July 2015

RADIX8 MULTI MODULUS MULTIPLIER

Proposed Multi-Modulus Radix-8 Booth Encoder

The radix-8 booth encoded multiplier digit is formatted using five bits, a sign bit si and four one-hot

encoded magnitude bits m1i, m2i, m3i and m4i. [N/3]+1 partial product.

Figure7.

Modulo-Reduced Partial Products for Radix-8 Booth Encoding

Table4.

Priya Sandhu & M. Anusha “Efficient Partial Product Generation Using Radix4 & Radix8 for Multi-

Modulus Multiplication”

International Journal of Emerging Engineering Research and Technology V3 ● I7 ● July 2015 166

Proposed Multi-Modulus Partial Product Generation for Radix-8 Booth Encoding

By the radix-8 Booth encoded multi-modulus multiplication is given by the booth selector (BS3)

module is used to generate partial products. The number of BS3 and MUX3 blocks required in the

partial products generation is 8 and 4, respectively (for n = 8) .The booth selector (BS3) module is

used to generate partial product. The number of BS3 and MUX3 blocks required in the partial

products generation is 8 and 4, respectively.(for n = 8)

Figure8.

Proposed Multi-Modulus HMG

Application – specific adders known as HMG that compute only the sum of X and 2Xm to generate

the hard multiple +3Xm. The HMGs were designed by reformulating the carry equations of modulo 2n-

1 and 2n+1 addition using the bit correlation between the addends and 2Xm.The carry equation given

below

Figure9.

Priya Sandhu & M. Anusha “Efficient Partial Product Generation Using Radix4 & Radix8 for Multi-

Modulus Multiplication”

167 International Journal of Emerging Engineering Research and Technology V3 ● I7 ● July 2015

Bias for the Modulus 2^N for Radix-8 Booth Encoding

Table5.

Bias for the modulus 2^n+1 for radix-8 booth encoding

Table6.

Proposed Multi-Modulus Bias Generation for Radix-8 Booth Encoding

The operators “+” and “.” denote Boolean OR and AND, respectively when their operands are

Boolean variables. For m = 2
n
+1, the aggregate bias is composed of three n- bit words, K1,K2 and K3.

For m= 2n the aggregate bias is composed of one n- bit word K1. For m= 2n-1, the aggregate bias

equal zeros.

Figure10.

Priya Sandhu & M. Anusha “Efficient Partial Product Generation Using Radix4 & Radix8 for Multi-

Modulus Multiplication”

International Journal of Emerging Engineering Research and Technology V3 ● I7 ● July 2015 168

Proposed Multi-Modulus Partial Product Addition for Radix-8 Booth Encoding

 A multi-modulus addition can be implemented using a MUX3 in the carry feedback path that selects

from, 0 or. The multi-modulus addition of partial products in a CSA tree and a parallel-prefix two-

operand adder. The parallel- prefix adder is constructed from the pre-processing (PP), prefix and post-

processing blocks and the implementation of these blocks. Number of MUX3 blocks needed for

multi-modulus partial product addition

Figure11.

SIMULATION RESULTS

Radix4-4bit

Priya Sandhu & M. Anusha “Efficient Partial Product Generation Using Radix4 & Radix8 for Multi-

Modulus Multiplication”

169 International Journal of Emerging Engineering Research and Technology V3 ● I7 ● July 2015

Radix4-32bit

Radix4-64bit

Radix8-4bit

Priya Sandhu & M. Anusha “Efficient Partial Product Generation Using Radix4 & Radix8 for Multi-

Modulus Multiplication”

International Journal of Emerging Engineering Research and Technology V3 ● I7 ● July 2015 170

Radix8-32bit

Radix8-64bit

CONCLUSION

A new radix-4 and radix-8 Booth encoded multi-modulus multipliers that perform modulo

multiplication for the three special moduli operations in this we are designed radix4 and radix8

multipliers then do modulus operation so radix 4 having 4,32,64 bit sizes and radix 8 having 4,32,64

bit sizes. These designs are implemented using Xilinx 13.2.

REFERENCES

[1] R. Conway and J. Nelson, “Improved RNS FIR filter architectures, ”IEEE Trans. Circuits Syst.

II, Exp. Briefs, vol. 51, no. 1, pp. 26–28,Jan. 2004

[2] A. S. Madhukumar and F. Chin, “Enhanced architecture for residue number system-based

CDMA for high rate data transmission,” IEEE Trans. Wireless Commun., vol. 3, no. 5, pp. 1363–

1368, Sep. 2004.

[3] D. M. Schinianakis et al., “An RNS implementation of an elliptic curve point multiplier,” IEEE

Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 6, pp. 1202–1213, Jun. 2009.

[4] N. S. Szabo and R. I. Tanaka, Residue Arithmetic and its Application to Computer Technology.

New York: McGraw-Hill, 1967.

[5] R. Zimmermann, “Efficient VLSI implementation of modulo addition and multiplication,” in

Proc. 14th IEEE Symp. Computer Arithmetic, Adelaide, Australia, Apr. 1999, pp. 158–167.

Priya Sandhu & M. Anusha “Efficient Partial Product Generation Using Radix4 & Radix8 for Multi-

Modulus Multiplication”

171 International Journal of Emerging Engineering Research and Technology V3 ● I7 ● July 2015

[6] L. Kalampoukas, D. Nikolos, C. Efstathiou, H. T. Vergos, and J. Kalamatianos,“High-speed

parallel-prefix modulo adders,” IEEETrans. Comput, vol. 49, no. 7, pp. 673–680, Jul. 2000.

[7] S. J. Piestrak, “Design of squarers modulo A with low-level pipelining,” IEEE Trans. Circuits

Syst. II, Analog Digit. Signal Process., vol. 49, no. 1, pp. 31–41, Jan. 2002.

[8] H. T. Vergos, C. Efstathiou, and D. Nikolos, “Diminished-one modulo adder design,” IEEE

Trans. Comput., vol. 51, no. 12, pp.1389–1399, Dec. 2002.

[9] C. Efstathiou, H. T. Vergos, and D. Nikolos, “Modified Booth modulo multiplier,” IEEE

AUTHORS’ BIOGRAPHY

Priya Sandhu received B.Tech degree in Electronics and Communication

Engineering from JIET SETG Jodhpur, Rajasthan, India, affiliated to Rajasthan

Technical University, Kota, India in 2012. She is pursuing M.Tech in VLSI Design&

Embedded Systems at Malla Reddy College of Engineering and Technology,

Hyderabad, India.

Anusha Meneni received her B.Tech Degree in Electronics & Instrumentation

Engineering from JNT University, Hyderabad, M.Tech in VLSI System Design from

JNT University, Hyderabad. She is currently working as Associate Professor in the

Department of ECE, Malla Reddy College of Engineering and Technology,

Hyderabad, India

