

International Journal of Emerging Engineering Research and Technology

Volume 3, Issue 8, August 2015, PP 125-129

ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online)

*Address for correspondence:

lavanayamutyala84@gmail.com

International Journal of Emerging Engineering Research and Technology V3 ● I8 ● August 2015 125

Design of I2C BUS Controller using VHDL

1
Spandana Sunku,

2
Lavanya Latha Mutyala

1M.Tech, Audhisankara Institute of Technology, Gudur, India
2Assistant Professor, Dept of ECE, Audhisankara Institute of Technology, Gudur, India

ABSTRACT

I2C bus Controllers have been an integral part of many SoCs in the industry and also have been logically

implemented individually. For serial data communication with low performance peripherals we design I2C

Controller. In this paper, I2C controller for Master and Slave Device controller. This module was designed in

VHDL hardware descriptive language. This design was synthesized using Xilinx ISE design suit 13.2. The

design can be used to interface low speed peripherals like set top boxes, DVD, or other electronic devices.

Keywords: I2C, FPGA, master, serial data communication, slave, Spartan 3E, Xilinx.

INTRODUCTION

In the world of serial data communication [6], there are protocols like RS-232, RS-422, RS-485, SPI

(Serial peripheral interface), and Micro wire for interfacing high speed and low speed peripherals.

These protocols require more pin connection in the IC(Integrated Circuit) for serial data

communication to take place, as the physical size of IC have decreased over the years, we require

less amount of pin connection for serial data transfer. USB/SPI/Microwire and mostly UARTS are

all just „one point to one point‟ data transfer bus systems. They use multiplexing of the data path

and forwarding of messages to service multiple devices. To overcome this problem, the I2C protocol

was introduced by Phillips, which requires only two lines for communication with two or more chips

and can control a network of device chips with just a two general purpose I/O pins [11] whereas, other

bus protocols require more pins and signals to connect devices.

Fig1. I/O Diagram of I2C Controller

In this project, we are implementing I2C bus protocol for interfacing low speed peripheral devices on

FPGA [3]. It is also the best bus for the control applications, where devices may have to be added

or removed from the system. I2C protocol [1] can also be used for communication between

multiple circuit boards in equipments with or without using a shielded cable depending on the

distance and speed of data transfer.I2C bus is a medium for communication where master controller

[9] is used to send and receive data to and from the slave. The low speed peripheral, is interfaced with

I2C master bus and synthesized on Spartan 3E. Fig.1 shows the I2C bus system with the I2C

controller implemented on a FPGA.

Spandana Sunku & Lavanya Latha Mutyala “Design of I2C BUS Controller using VHDL”

126 International Journal of Emerging Engineering Research and Technology V3 ● I8 ● August 2015

The synopsis of the paper is as follows: In section 2, we discussed I2C protocol of our proposed

design which also presents module description for our proposed system. In section 3, we present the

software implementation along with algorithm and flow chart. Finally, concluded with future scale up

in section 5.

PROPOSED WORK

I2C Protocol

I2C is a two wire, bidirectional serial bus that provides effective data communication between two

devices. I2C bus supports many devices and each device is recognized by its unique address. In Fig.1

detain and addr_in is the 8 bit address given as an input. Clk and reset are the input lines used to

initiate the bus controller process. The R/ w signal are given as an input to indicate whether master or

slave acts as a transmitter in the data transmission.

Fig2. (a) “START” Sequence. (b) “STOP” Sequence

The physical I2C bus consists of just two wires, called SCLand SDA. SCL is the clock line; it is used

to synchronize all data transfers over the I2C bus. SDA is the data line; the SCL and SDA lines are

connected to all devices on the I2C bus. As both SCL and SDA lines are "open drain” drivers they are

pulled up using pull up resistors.

The I2C bus is said to be idle when both SCL and SDA area logic 1 level. When the master

(controller) wishes to transmit data to a slave. It begins by issuing a start sequence on the I2C bus,

which is a high to low transition on the SDA line while the SCL line is high as shown in Fig. 2(a).

The bus is considered to be busy after the START condition. After the START condition, slave

address is sent by the master. The slave device whose address matches the address that is being sent

out by the master will respond with an acknowledgement bit on the SDA line by pulling the SDA

line low. Data is transferred in sequences of 8 bits. The bits are placed on the SDA line starting

with the MSB (Most Significant Bit). For every 8 bits transferred, the slave device receiving the

data sends back an acknowledge bit, so there are actually 9 SCL clock pulses to transfer each 8 bit

byte of data this is shown in Fig.3. If the receiving device sends back a low ACK bit, then it has

received the data and is ready to accept another byte. If it sends back a high then it is indicating it

cannot accept any further data and the master should terminate the transfer by sending a STOP

sequence. In Fig.2 (b) which shows the STOP sequence, where the SDA line is driven low while

SCL line is high. This signals the end of the transaction with the slave device.

Serial Data Communication

The I2C bus has two modes of operation [4]: master transmitter and master receiver. The I2C master

bus initiates data transfer and can drive both SDA and SCL lines Slave device is addressed by the

master. It can issue only data on the SDA line.

Fig3. Acknowledgement on the I2C Bus

Fig4. Master Transmission Mode

Spandana Sunku & Lavanya Latha Mutyala “Design of I2C BUS Controller using VHDL”

International Journal of Emerging Engineering Research and Technology V3 ● I8 ● August 2015 127

Fig5. Master Receiver Mode

In master transmissionn mode, after the initiation of the START sequence, the master sends out a

slave address. The address byte contains the 7 bit [2] address, which is 1101000, followed by the

direction bit (R/ w). After receiving and decoding the address byte the device outputs acknowledge on

the SDA line. After the acknowledges the slave address + write bit, the master transmits a register

address to the will set the register pointer on the slave. The master will then begin transmitting each

byte of data with the slave acknowledging each byte received. The master will generate a stop

condition to terminate the data write.

In master receiver mode, the first byte is received and handled as in the master transmission mode.

However, in this mode, the direction bit will indicate that the transfer direction is reversed. Serial data

is transmitted on SDA by the slave, while the serial clock is input on SCL. START and STOP

conditions are recognized as the beginning and end of a serial transfer (Fig.5). The address byte is the

first byte received after the start condition is generated by the master. The address byte contains the

7-bit address, which is 1101000, followed by the direction bit (R/ w). After receiving and decoding

the address byte the device inputs acknowledge on the SDA line. The slave then begins to transmit

data starting with the register address pointed to by the register pointer. If the register pointer

is not written before the initiation of a read mode, the first address that is read is the last one stored

in the register pointer.

SLAVE Controlling

The I2c Controller supports a bi-directional, 2-wire bus and data transmission protocol. Master

sending data at slave side receive the data byte and check the slave address and check the write or

read control bit and perform the operation in slave registers. Get back the ack to master.

SOFTWARE IMPLEMENTATION

I2C master controller is designed using VHDL HDL [5] based on Finite State Machine (FSM). FSM

is a sequential circuit that uses a finite number of states to keep track of its history of operations, and

based on history of operation and current input, determines the next state. There are several states in

obtaining the result.

Algorithm

State1: An idle condition: I2C bus doesn‟t perform any operation (SCL and SDA remains high).

State2: Start condition: master initiates data transmission by providing START (SCL is high and SDA

is from high to low).

State3: Slave address - write: master sends the slave address- write (11010000) to the slave.

State4: If the slave address matches with the slave, it sends an acknowledgement bit in response to the

master.

State5: 8 Bit Register Address will be transmitted to the slave. Again acknowledgement is sent to the

master by the slave.

State6: Data to be transmitted is sent to the slave by the master. After receiving the data, slave

acknowledges the master.

State7: Stop condition: Slave sends a stop bit to the master to terminate the communication (SCL is

high and SDA is from Low to high).For performing read operation, write operation is performed first

and then read operation is done. Slave address for read is11010001. (State 7 will not be performed for

read operation)

State8: Master transmits slave address for read operation to the slave.

State9: Master receives the data from the slave and acknowledges the slave.

State10: Master sends a STOP bit to terminate the connection (SCL is high and SDA is from

Low to high).

Spandana Sunku & Lavanya Latha Mutyala “Design of I2C BUS Controller using VHDL”

128 International Journal of Emerging Engineering Research and Technology V3 ● I8 ● August 2015

Fig.8 shows the flowchart for I2C master bus communication [8] with slave device. Fig.9 shows the

Modelsim simulation result for write operation, the given data input is written in to slave register

address in each state of FSM programmed in VHDL HDL [12]. F ig.10 shows the Xilinx ISim

Fig8. Flowchart for I2C bus communication

simulation result for read operation, to read the written data from the slave the write operation takes

place first followed by the repeated start condition and sending the slave address read (11010001) in

each state of FSM. The simulated VHDL coding is synthesized on Spartan 3E through Xilinx ISE

Design Suite13.2 [7]. The design is analyzed using Chip Scope Analyzer in Spartan 3E platform.

Fig9. Simulation Result for Master transmitted data

Fig10. Simulation Result for Slave receive data

Spandana Sunku & Lavanya Latha Mutyala “Design of I2C BUS Controller using VHDL”

International Journal of Emerging Engineering Research and Technology V3 ● I8 ● August 2015 129

CONCLUSION

This project demonstrates how I2C Controller (Master) transmits data and slave receiving. So

that any low speed peripheral devices can be interfaced using I2C bus protocol as master/slave. In

future, this can be implemented with multiple masters and multiple slaves to co-ordinate the entire

system by clock synchronization techniques.

REFERENCES

[1] I2C Bus Specification, Philips Semiconductor, version 2.1, January2000.

[2] DS1307 64 x 8, Serial, I2C Real Time Clock, and Maxim integrated, 2008.

[3] Prof. Jai Karan Singh et al “Design and Implementation of I2C master controller on FPGA using

VHDL,” IJET, Aug-Sep 2012.

[4] Raj Kamal, “Devices and Communication Buses for Devices Network,” in Embedded system:

Architecture programming and Design, Shalini Jha Ed. New Delhi, India: Tata McGraw-Hill

Education, 2008, pp.160-165.

[5] Verilog® HDL Quick Reference Guide, IEEE Standard 1364-2001.

[6] Tim Wilmshurst, “Starting with Serial,” in Designing Embedded Systems with PIC

Microcontrollers: Principles and Applications, 2ndEd.Burlinton: Newnes, 2009, pp.307-327.

[7] Spartan-3A/3AN FPGA Starter Kit Board User Guide, Xilinx, version1.1, 2008.

[8] A.P. Godse, D.A.Godse, “Bus Standards,” in Microprocessors and its Applications, 3rd Ed. Pune,

India: Technical publications, 2008.

[9] Vincent Himpe, “Historical background of I2C,” in Mastering the I2C Bus, Aachen, Germany:

Elektor Verilog publications, 2011.

[10] Pong P.Chu, “I/O Modules,” in FPGA Prototyping by Verilog Examples: Xilinx Spartan – 3

Versions, New Delhi, India: Wiley, 2008.

[11] AN10216-01 I2C Manual, Philips Semiconductor, March 2003.

[12] Frank Vahid, “Hardware Description Language,” in Digital Design with RTL Design, Verilog and

VHDL, 2nd Ed. Katie Singleton Ed. Hoboken, New Jersey: VP and Executive publisher, 2010,

pp 487-532.

AUTHORS’ BIOGRAPHY

Spandana Sunku received the B.Eng. degree in electronics and communication

engineering in Visvodaya engineering college, Kavali Affiliated by Jawaharlal

Nehru Technological University Ananthapur with Disinction in 2013 and

Pursuing M.tech. Degree in VLSI in Audhisankara Institute of Technology,

Gudur affiliated by Jawaharlal Nehru Technological University Ananthapur.

Area of interest: VLSI.

Lavanya latha Mutyala received the B.Eng. degree in electronics and

communication engineering in Narayana engineering college, Gudur Affiliated

by Jawaharlal Nehru Technological University Hyderabad with Disinction in

2007 and the M.tech. Degree in Digital Systems Computer Electronics

engineering in P.B.R Visvodaya Institute Of Technology, Kavali Affiliated by

University of Jawaharlal Nehru Technological University Ananthapur in 2013.

Present working as assistant professor in Audhisankara Institute of Technology,

Gudur.

